Spelling suggestions: "subject:"poly A"" "subject:"holy A""
51 |
Estudo experimetal comparativo da histotoxicidade entre o copolímero de poli (ácido láctico-co-glicólico) e a blenda poli (ácido láctico-co-glicólico) / poli (isopreno)Kim, Jung Ho January 2012 (has links)
Introdução: A aplicação clínica de biomateriais está se expandindo para diversas especialidades médicas. Dentre os diversos tipos de biomateriais, os classificados como temporários merecem atenção especial, pois são assimilados pelo organismo após exercerem sua função, evitando, assim, procedimento cirúrgico para sua retirada. O copolímero de poli (ácido láctico-co-glicólico) (PLGA) é um tipo de biomaterial temporário, rotineiramente utilizado na medicina na forma de fios de sutura e implantes ortopédicos. A mistura do PLGA com o poli (isopreno) resulta em uma blenda (PLGA / PI), de alta resistência e tenacidade, que foi desenvolvida pelo Laboratório de Biomateriais do Instituto de Engenharia da UFRGS. Entretanto, não existem estudos “in vivo” testando a reação óssea desta blenda. Objetivo: Testar a histotoxicidade da blenda de PLGA / PI em relação ao biopolímero já consagrado PLGA. Método: Foram utilizados 46 ratos machos wistar (Rattusnorvegicus - linhagem albina), divididos em 2 grupos conforme o material implantado (PLGA ou PLGA / PI) na calota craniana, e subdivididos em tempos de morte (15, 30, 60 e 90 dias). Os procedimentos foram realizados na Unidade de Experimentação Animal (UEA) do Hospital de Clínicas de Porto Alegre (HCPA). Após a morte, a calota craniana foi retirada, submetida ao exame histopatológico e aplicado o escore de Dadas e cols (14) modificado. Resultados: A diferença da histotoxicidade dos dois materiais não foi significativa nos períodos 15, 30 e 90 dias, porém foi significativa no período 60 dias. Conclusão: A histotoxicidade do PLGA / PI, ao final do estudo (90 dias), foi semelhante ao PLGA, demonstrando equivalência em longo prazo. O período de 60 dias pós-cirúrgico (grupo da blenda) foi o único em que a histotoxicidade mostrou-se significativamente maior. Mais estudos devem ser feitos para melhorar o entendimento desta variação. / Introduction: Clinical application of biomaterials is expanding to various medical specialties. Among the different types of biomaterials, those classified as temporary deserve special attention because they are assimilated by the body after exercising their function, thereby avoiding surgical procedure for their removal. Co-polymer poly (lactic-co-glycolic acid) (PLGA) is a type of temporary biomaterial, routinely used in medicine as suture threads and orthopedic implants. The mixture of PLGA with poly (isoprene) results in a high-strength and thoughness blend (PLGA / PI), developed by the Biomaterials Laboratory of the Engineering Institute/ UFRGS. However, there are no studies “in vivo” testing the bone reaction of that blend. Objective: To Test histotoxicity of PLGA / PI blend over the already established biopolymer, PLGA. Method: Forty six male Wistar rats (Rattus norvegicus – albino strain), divided into 2 groups according to the material (PLGA or PLGA / PI) implanted in the skull and sub divided into periods of death (15, 30, 60 and 90 days). The procedures were developed in the Animal Experiment Unit (AEU) of Hospital de Clínicas de Porto Alegre (HCPA). After death, the skull was removed, submitted to histopathologic examination and the modified Dadas’ et all score was used (14). Results: The histotoxicity difference of the two materials was not significant in the periods of 15, 30 and 90 days, but it was significant in the period of 60 days. Conclusion: At the end of the study (90 days), the PLGA / PI histotoxicity was similar to PLGA, showing longterm equivalence. The 60-day post-surgical period was the only one in which histotoxicity was significantly higher (blend group). More studies shall be done in in order to better understand that variation.
|
52 |
Estudo experimetal comparativo da histotoxicidade entre o copolímero de poli (ácido láctico-co-glicólico) e a blenda poli (ácido láctico-co-glicólico) / poli (isopreno)Kim, Jung Ho January 2012 (has links)
Introdução: A aplicação clínica de biomateriais está se expandindo para diversas especialidades médicas. Dentre os diversos tipos de biomateriais, os classificados como temporários merecem atenção especial, pois são assimilados pelo organismo após exercerem sua função, evitando, assim, procedimento cirúrgico para sua retirada. O copolímero de poli (ácido láctico-co-glicólico) (PLGA) é um tipo de biomaterial temporário, rotineiramente utilizado na medicina na forma de fios de sutura e implantes ortopédicos. A mistura do PLGA com o poli (isopreno) resulta em uma blenda (PLGA / PI), de alta resistência e tenacidade, que foi desenvolvida pelo Laboratório de Biomateriais do Instituto de Engenharia da UFRGS. Entretanto, não existem estudos “in vivo” testando a reação óssea desta blenda. Objetivo: Testar a histotoxicidade da blenda de PLGA / PI em relação ao biopolímero já consagrado PLGA. Método: Foram utilizados 46 ratos machos wistar (Rattusnorvegicus - linhagem albina), divididos em 2 grupos conforme o material implantado (PLGA ou PLGA / PI) na calota craniana, e subdivididos em tempos de morte (15, 30, 60 e 90 dias). Os procedimentos foram realizados na Unidade de Experimentação Animal (UEA) do Hospital de Clínicas de Porto Alegre (HCPA). Após a morte, a calota craniana foi retirada, submetida ao exame histopatológico e aplicado o escore de Dadas e cols (14) modificado. Resultados: A diferença da histotoxicidade dos dois materiais não foi significativa nos períodos 15, 30 e 90 dias, porém foi significativa no período 60 dias. Conclusão: A histotoxicidade do PLGA / PI, ao final do estudo (90 dias), foi semelhante ao PLGA, demonstrando equivalência em longo prazo. O período de 60 dias pós-cirúrgico (grupo da blenda) foi o único em que a histotoxicidade mostrou-se significativamente maior. Mais estudos devem ser feitos para melhorar o entendimento desta variação. / Introduction: Clinical application of biomaterials is expanding to various medical specialties. Among the different types of biomaterials, those classified as temporary deserve special attention because they are assimilated by the body after exercising their function, thereby avoiding surgical procedure for their removal. Co-polymer poly (lactic-co-glycolic acid) (PLGA) is a type of temporary biomaterial, routinely used in medicine as suture threads and orthopedic implants. The mixture of PLGA with poly (isoprene) results in a high-strength and thoughness blend (PLGA / PI), developed by the Biomaterials Laboratory of the Engineering Institute/ UFRGS. However, there are no studies “in vivo” testing the bone reaction of that blend. Objective: To Test histotoxicity of PLGA / PI blend over the already established biopolymer, PLGA. Method: Forty six male Wistar rats (Rattus norvegicus – albino strain), divided into 2 groups according to the material (PLGA or PLGA / PI) implanted in the skull and sub divided into periods of death (15, 30, 60 and 90 days). The procedures were developed in the Animal Experiment Unit (AEU) of Hospital de Clínicas de Porto Alegre (HCPA). After death, the skull was removed, submitted to histopathologic examination and the modified Dadas’ et all score was used (14). Results: The histotoxicity difference of the two materials was not significant in the periods of 15, 30 and 90 days, but it was significant in the period of 60 days. Conclusion: At the end of the study (90 days), the PLGA / PI histotoxicity was similar to PLGA, showing longterm equivalence. The 60-day post-surgical period was the only one in which histotoxicity was significantly higher (blend group). More studies shall be done in in order to better understand that variation.
|
53 |
Estudo experimetal comparativo da histotoxicidade entre o copolímero de poli (ácido láctico-co-glicólico) e a blenda poli (ácido láctico-co-glicólico) / poli (isopreno)Kim, Jung Ho January 2012 (has links)
Introdução: A aplicação clínica de biomateriais está se expandindo para diversas especialidades médicas. Dentre os diversos tipos de biomateriais, os classificados como temporários merecem atenção especial, pois são assimilados pelo organismo após exercerem sua função, evitando, assim, procedimento cirúrgico para sua retirada. O copolímero de poli (ácido láctico-co-glicólico) (PLGA) é um tipo de biomaterial temporário, rotineiramente utilizado na medicina na forma de fios de sutura e implantes ortopédicos. A mistura do PLGA com o poli (isopreno) resulta em uma blenda (PLGA / PI), de alta resistência e tenacidade, que foi desenvolvida pelo Laboratório de Biomateriais do Instituto de Engenharia da UFRGS. Entretanto, não existem estudos “in vivo” testando a reação óssea desta blenda. Objetivo: Testar a histotoxicidade da blenda de PLGA / PI em relação ao biopolímero já consagrado PLGA. Método: Foram utilizados 46 ratos machos wistar (Rattusnorvegicus - linhagem albina), divididos em 2 grupos conforme o material implantado (PLGA ou PLGA / PI) na calota craniana, e subdivididos em tempos de morte (15, 30, 60 e 90 dias). Os procedimentos foram realizados na Unidade de Experimentação Animal (UEA) do Hospital de Clínicas de Porto Alegre (HCPA). Após a morte, a calota craniana foi retirada, submetida ao exame histopatológico e aplicado o escore de Dadas e cols (14) modificado. Resultados: A diferença da histotoxicidade dos dois materiais não foi significativa nos períodos 15, 30 e 90 dias, porém foi significativa no período 60 dias. Conclusão: A histotoxicidade do PLGA / PI, ao final do estudo (90 dias), foi semelhante ao PLGA, demonstrando equivalência em longo prazo. O período de 60 dias pós-cirúrgico (grupo da blenda) foi o único em que a histotoxicidade mostrou-se significativamente maior. Mais estudos devem ser feitos para melhorar o entendimento desta variação. / Introduction: Clinical application of biomaterials is expanding to various medical specialties. Among the different types of biomaterials, those classified as temporary deserve special attention because they are assimilated by the body after exercising their function, thereby avoiding surgical procedure for their removal. Co-polymer poly (lactic-co-glycolic acid) (PLGA) is a type of temporary biomaterial, routinely used in medicine as suture threads and orthopedic implants. The mixture of PLGA with poly (isoprene) results in a high-strength and thoughness blend (PLGA / PI), developed by the Biomaterials Laboratory of the Engineering Institute/ UFRGS. However, there are no studies “in vivo” testing the bone reaction of that blend. Objective: To Test histotoxicity of PLGA / PI blend over the already established biopolymer, PLGA. Method: Forty six male Wistar rats (Rattus norvegicus – albino strain), divided into 2 groups according to the material (PLGA or PLGA / PI) implanted in the skull and sub divided into periods of death (15, 30, 60 and 90 days). The procedures were developed in the Animal Experiment Unit (AEU) of Hospital de Clínicas de Porto Alegre (HCPA). After death, the skull was removed, submitted to histopathologic examination and the modified Dadas’ et all score was used (14). Results: The histotoxicity difference of the two materials was not significant in the periods of 15, 30 and 90 days, but it was significant in the period of 60 days. Conclusion: At the end of the study (90 days), the PLGA / PI histotoxicity was similar to PLGA, showing longterm equivalence. The 60-day post-surgical period was the only one in which histotoxicity was significantly higher (blend group). More studies shall be done in in order to better understand that variation.
|
54 |
Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up ApproachHnatchuk, Nataliia 05 1900 (has links)
Asymmetric polymeric materials can be formed by either top-down or bottom-up methods. Bottom-up methods involve assembling the atoms and molecules to form small nanostructures by carefully controlled synthesis, which results in a reduction of some of the top-down limitations. In this dissertation, thermal, tribological and antireflective properties of polymeric materials have been enhanced by introducing structural asymmetry. The overall performance of commercial polymeric coatings, e.g. epoxy and polyvinyl chloride, has been improved by conducting the blending methods, specifically, chemical modification (α,ω-dihydroxydimethyl(methyl-vinyl)oligoorganosiloxane), cross-linking (triallyl isocyanurate), and antioxidant (tris(nonylphenyl) phosphite) incorporation. The nonequilibrium polymeric structures (moth-eye and square array) have been developed for the ultrahigh molecular weight block copolymers via the short-term solvent vapor annealing self-assembly. The large domain size of the moth eye structure allows for improvement of the light transmittance particularly in the visible and near infrared ranges, while the square arrangement of the block copolymer opens the possibility of magnetic data storage application by the large magnetic nanoparticles' embedment or masking of the superconductors.
|
55 |
Synthesis and Characterization of Novel Polyethers and Polypeptides for Use in Biomedicine and Magnetic Resonance ImagingLiang, Jue 24 January 2014 (has links)
Copolymers that contain terminal or pendent functional groups have great potential in the biomedical area due to their biocompatibility and tunable properties.1-3 In this research, two vinyl functional epoxides, vinyldimethylsilylpropyl glycidyl ether (VSiGE) and ethoxy vinyl glycidyl ether (EVGE), were synthesized. These heterobifunctional monomers were polymerizable via the epoxide groups and can be functionalized via thiol-ene reactions through the pendent vinyl groups. A series of amphiphilic block copolyethers based on poly(ethylene oxide) and poly(1,2-butylene oxide) that incorporate VSiGE or EVGE were synthesized and characterized. The vinyl ether and vinyl silane functional groups were functionalized after polymerization and the functional polymers formed pH-sensitive micelles in aqueous medium. The copolyethers were loaded with ritonavir yielding well-controlled nanoparticles.
Poly(L-glutamic acid) is comprised of naturally occurring L-glutamic acid repeating units that are linked together with amide bonds. In this research, we have prepared magnetic block ionomer complexes based on poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers. This is of interest due to the biocompatibility and biodegradable nature of the poly(L-glutamic acid) component of the backbone. Allyl- and thiol-functional poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers were also synthesized and coated onto the surface of iron oxide nanoparticles. Allyl- and thiol-tipped single particles were reacted with each other to prepare magnetic clusters. Transverse relaxivities of the clusters were found to be significantly higher than that of single particles.
One major problem in commercial development of therapeutic proteins is their poor transport across cellular membranes and biological barriers such as the blood-brain barrier (BBB). One solution to this problem is to modify proteins with amphiphilic block copolymers such as PEO-b-PPO-b-PEO, Pluronics®. However, it isn't possible to independently tune the two PEO block lengths with commercial Pluronics® since a difunctional PPO macroinitator is utilized to grow both PEO blocks simultaneously (HO-EOn-b-POm-b-EOn-OH). Another challenge is introducing functional group which allows post-polymerization functionalization for specific applications. In this study, a series of heterobifunctional asymmetric amino-EOn1-b-POm-b-EOn2-OH block copolymers (APs) with different molecular weights of each block were synthesized and the amino terminal group was conjugated to an antioxidant enzyme, Cu/Zn superoxide dismutase (SOD1). The conjugates were characterized and their cellular uptake was investigated. / Ph. D.
|
56 |
Electron-phonon coupling in conjugated systemsGraham, Stephen Charles January 1995 (has links)
No description available.
|
57 |
The syntheses and characterisation of some halogenonitrosyl hydrotris(3,5-dimethylpyrazol-1-yl)borato complexes of molybdenumDoyle, Garry Anthony January 1997 (has links)
No description available.
|
58 |
Drug loading of biodegradable nanoparticles for site specific drug deliveryRedhead, Helen Margaret January 1997 (has links)
No description available.
|
59 |
Surface engineering of biodegradable polymers to create materials with biological mimicking activityQuirk, Robin Andrew January 2000 (has links)
No description available.
|
60 |
ENANTIO-SELECTIVE MECHANISM OF THE POLY-PROLINE CHIRAL STATIONARY PHASE: A MOLECULAR DYNAMICS STUDYAshtari, MOHAMMAD 29 January 2013 (has links)
Poly-proline-based chiral stationary phases are relatively new stationary phases and have shown to be competitive to other commercially available chiral stationary phases for high performance liquid chromatography (HPLC). The conformational studies, solvation properties and enantio-selective mechanism of this chiral stationary phase are the main focus of this thesis. Semi-flexible models are developed based on an extensive series of ab initio calculations for proline selectors from di- to hexa-proline and a series of six chiral analytes. Then molecular dynamics simulations are performed to study the solvation, conformational preferences at the interface, and the selectivity.
The solvation and conformational preferences of poly-proline selectors at the interface are examined in a normal phase n-hexane/-2propanol and a reverse phase water/methanol solvent. We noticed a significant difference between conformational preferences of poly-proline chains in these solvents indicating the effect of solvent polarity and hydrogen bonding on the relative stabilities of poly-proline conformers. Solvent partitioning occurs at the interface and this creates a polarity gradient between the stationary phase and the bulk that encourages analyte docking at the interface. Hydrogen bonding to the poly-proline selectors is shown to be a function of solvent composition and poly-proline conformation at the interface.
The selectivity of the poly-proline chains was studied by molecular dynamics simulations of chiral analytes docking into the interface. The selectivity factors for a set of enantiomers were predicted successfully. Enantio-resolution has been shown to mostly happen with hydrogen bonding to poly-proline carbonyl oxygens located close to the interface. Steric interactions and conformational flexibility of the analytes are also contributing factors for enantio-resolution. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-01-28 14:31:53.316
|
Page generated in 0.0367 seconds