• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Studies of Dendritic Poly (Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens

Prabhat, Kumar January 2015 (has links) (PDF)
Synthesis and Studies of Dendritic Poly(Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens SYNOPSIS Dendrimers are hyperbranched synthetic macromolecules having branches-upon-branches structures, high molecular weights, globular shapes and monodispersities. Dendrimers possess a large number of modifiable functional groups at their peripheries. Initial efforts were largely concerned with the synthesis, design and development of new dendrimers. Exploring the chemical, biological and material applicability of these macromolecules are relevant to current interests, as a result of the unique structural features of dendrimers. Incorporation of transition metals and organic moieties at the peripheries of the dendrimers was studied to determine their efficacies in catalysis. Evolution of dendritic effects was observed in few instances, that were non-linear in nature. On the other hand, dendritic peripheries were also utilized to study mesogenic properties in liquid crystals. Chapter 1 of the Thesis gives an overview of the types of dendrimers, its structural features and their application in catalysis and as liquid crystalline materials. Chapter 2 describes the synthesis of a new type of poly(ethyl ether imine) dendrimer, having nitrogen as a branching unit, ethylene moiety as the spacer and an oxygen as the connecting linker. Synthesis, characterization, and studies of the photophysical properties of these dendrimers are described in this chapter. The molecular structure of second generation dendrimer is shown in Figure 1. Synthesis of this dendrimer was initiated using 2,2'-oxy-bis(ethan-1¬amine) as the core. The reaction sequence of two alternate nucleophilic substitutions and two alternate reductions, involving ethyl bromoacetate and bromoacetonitrile as monomers was employed in the synthesis of the dendrimer. The formation of dendrimers having ether linkage and tertiary amines as branching unit was established by spectroscopies and mass spectrometry. A number of functional groups, such as, acid, alcohol, amine, ester and nitrile are present at the peripheries of each generation the dendrimers that open up the possibilities for further studies. Carboxylic acid terminated poly(ethyl ether imine) dendrimers are substituted iminodiacetic acids, belonging to the class of polyaminocarboxylic acid. Methyl iminodiacetic acid boronates with NB coordination have emerged as an excellent substitute for unstable boronic acids. Upon increasing the steric bulk on the nitrogen moiety, the hydrolytic stability of the boronates to a base-catalyzed hydrolysis is increased. Combining the structure of carboxylic acid terminated dendrimer and the stability of the dendritic boronates, such dendritic iminodiacetic acids were reacted with arylboronic acids to prepare bis-and tetrakis-boronates (Figure 2). Kinetic hydrolytic studies of boronates were conducted to assess the stabilities of the newly synthesized dendritic boronates. From the studies it was observed that the tetrakis-boronate was ~20 times more stable in comparison with dimeric and monomeric boronates (Figure 3). Subsequent to synthesis and hydrolytic stability studies, C-C bond-forming Suzuki-Miyaura cross-coupling reactions were conducted. A comparison of the reactivities among monomeric, dimeric and tetrameric arylboronates in C-C bond-forming reactions showed a higher reactivity of monomeric and dimeric boronates, than the tetrameric aryl boronate to construct ter-and tetra-aryl in one-pot iterative manner (Figure 4). Chapter 3 of this Thesis describes the synthesis and characterization of dendritic boronates and studies of their hydrolytic stability in Suzuki-Miyaura cross¬coupling reactions to construct ter-and tetraaryls. Figure 4. Synthesis of (a) ter-(6) and (b) tetra-aryls (7) by following one-pot iterative cross-coupling reactions. Step-wise iterative synthesis of dendrimer allows a uniform branching throughout the structure. The first and second generation poly(ether imine) dendrimer series, having hydroxyl groups at their peripheries were chosen for further modification. A versatile mesogenic group, namely, cholesterol was covalently attached at the peripheries of the dendrimers with succinic moiety as linker, so as to install 4 and 8 cholesteryl moieties at the peripheries of the dendrimers (Figure 5), that were characterized by H, C NMR spectroscopies and elemental analysis, so as to confirm their structural homogeneities. Figure 5. Molecular structures of the first and second generation dendritic mesogens. Subsequent to synthesis and characterization, liquid crystalline properties of all the dendritic mesogens was assessed through differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD) studies. In POM study, broken fan or leaf like texture revealed the lamellar arrangement, whereas homeotropic appearance of texture on surfactant (cetyltrimethylammonium bromide) coated substrate indicated the lamellar nature of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 6). From DSC studies, the change in enthalpy was found to increase with increase in generation and change in enthalpy per mesogenic unit was found to be ~ -1 1-2 kJ mol, which indicated the mesophase arrangement to be lamellar. Decrease in the length of spacer dendritic backbone and increase in the generation increased the isotropization temperature of the dendritic liquid crystals. Variable temperature XRD studies were undertaken to characterize the mesophase property. Two sharp peaks in small angle region and a diffused halo in wide angle region in XRD pattern of the material suggested the smectic A (SmA) liquid crystalline arrangement of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 7). Figure 6. POM textures of (a) G1-Et-(OCS)4 at 136 oC; (b) G2-Et-(OCS)8 at 129 oC; (c) G1-Pr-(OCS)4 at 92 oC; (d) G2-Pr-(OCS)8 at 118 oC and (e) transition temperatures for dendromesogens (DSC second heating cycle, heating-cooling rate = 10 oC min-1). Figure 7. Small angle XRD profiles of: (a) G1-Pr-(OCS)4 and (b) G2-Et-(OCS)8 at 60 o C (black), 150 oC (red) and 180 oC (green), (Insets: Lorentzean fit of wide angle peak). The second generation ethyl-linker dendrimer G2-Et-(OCS)8 exhibited a layered structure with a superimposed in-plane modulation (SmÃ), the length of which corresponded to a rectangular column width. Chapter 4 describes the synthesis, characterization and studies of mesophase property and fluorescence property of cholesterol functionalized homologous pairs of the PETIM dendritic liquid crystals. Peripheral functionalization of the dendrimers provides an easy access to dendritic liquid crystalline materials. The covalent functionalization was extended further with the dendrimers for both the series, so as to have 2, 4, 8 and 16 cholesteryl groups at the peripheries of 0, 1, 2 and 3 generation dendrimers, respectively, having succinic amide and phthalic ester functionalities for 1, 2 and 3 generation dendrimers with 4, 8 and 16 cholesteryl groups. Molecular structures of third generation dendrimers are shown in Figure 8. Figure 8. Molecular structures of third generation G3-Pr-(NHCS)16 and G3-Pr-(OCP)16. Subsequent to synthesis and characterization, mesophase property was studied through POM, DSC and XRD techniques. In POM study, a birefringent texture was observed in heating and cooling cycles. Leaflet, broken fan or bâtonnet like texture suggested the layered arrangement of the molecules (Figure 9). In DSC studiues, it was observed that the amide-linked dendrimers showed higher glass transition and isotropization temperatures than that of ester-linked dendrimers within the same generation irrespective of the back-bone of the dendrimer. Succinic moiety linked dendrimers showed lower glass transition temperature than that of phthalic moiety linked dendrimers and consequently, larger mesophase range. The change in enthalpy for isotropization was found to increase with increase in generation, whereas change in -1 enthalpy per mesogenic unit was 1-2 kJ mol, indicative of a layered arrangement in the mesophase. Figure 9. POM textures (20x) of (a) G3-Pr-(NHCS)16 at 90 oC; (b) G3-Pr-(OCS)16 at 90 ooo C; (c) PG1-(NHCS)4 at 134 C; (d) G3-Pr-(OCP)16 at 98 C and (e) transition temperatures for dendromesogens (second cycle, heating-cooling rate = 10 oC min-1). Appearance of two sharp peaks in small angle region and a wide halo in wide angle region in XRD pattern supported lamellar mesophase property of the material (Figure 10). On decreasing the temperature, increase in the layer thickness also suggested the smectic A arrangement of the molecules except third generation phthalate derivative G3-Pr-(OCP)16, which showed rectangular columnar mesophase. For all the dendromesogens, the layer thickness increased with the increase in generation. Upon protonation, the first generation dendrimer showed a change in mesophase from simple smectic A to modulated smectic A with decrease in layer thickness. The change in liquid crystal property of the dendromesogens from lamellar to columnar mesophase by changing the linker of the mesogen is unknown so far in the dendrimer liquid crystals. Chapter 5 gives details of synthesis, characterization and mesophase property study of ester-and amide-linked dendritic liquid crystals. Overall, the Thesis establishes a synthetic methodology for the synthesis of a new homologous series of poly(ether imine) dendrimers with ethyl spacer; synthesis of dendritic boronates and their studies in cross-coupling reactions through in-situ slow release of boronic acid; hydrolytic stability study showed higher stability of dendritic boronates which was used in one-pot iterative cross-coupling reactions to construct ter-and tetra-aryls. decrease in linker length in dendrimer backbone modified the thermal, as well as, mesophase behavior of the dendritic liquid crystals; change in the linker functionality from ester to amide changed the thermal behavior of dendritic liquid crystals; a switching of mesophase property from lamellar to columnar was observed by changing the rigidity of the linker from succinate to phthalate without changing the linker length. The results of the above chapters are in different stages of publications: 1 Dendritic iminodiacetic acids and their boronates in Suzuki-Miyaura cross¬coupling reactions. Sharma, A.; Kumar, P.; Pal, R.; Jayaraman, N. Revised Manuscript submitted. 2 In-plane modulated smectic à vs smectic A lamellar structures in homologous pairs of dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Revised Manuscript submitted. 3 Effect of protonation on dendritic liquid crystals of poly(ether imine) dendrimers: structure property relationship studies. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript submitted. 4 Smectic to rectangular columnar switch from succinic to phthalic linker alteration in poly(ether imine) dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript in preparation.
2

Synthesis And Studies Of Poly(Propyl Ether Imine) (PETIM) Dendrimers

Jayamurugan, Govindasamy 03 1900 (has links)
Dendrimers are hyperbranched macromolecules, with branches-upon-branches architectures, precise constitutions and molecular weights of several kiloDaltons (Figure 1). The dendritic structure remains to be an influential feature in the developments of dendrimer chemistry at large. Organometallic catalysis forms an active area, wherein the dendrimers find a defined importance. A number of dendrimer types have been utilized to study organometallic catalysis that combine the dendritic architectural principles. Chapter 1 of the Thesis summarizes the advances in the dendrimer-mediated catalyses, apart from an overview of the methods adopted to synthesize dendrimers. Chapter 2 describes the synthesis of newer types of larger generation poly(propyl ether imine) (PETIM) dendrimers. The molecular structure of a sixth generation PETIM dendrimer is shown in Figure 2. The PETIM series of dendrimers are synthesized by iterative synthetic cycles of two reductions and two Michael addition reactions. Modifications of the synthetic methods were identified, so as to facilitate the synthesis and purification of the higher generation dendrimers. Formation of the PETIM dendrimers, possessing a tertiary amine as the branch juncture and ether as the linker component, is assessed systematically by routine analytical techniques. The peripheries of these dendrimers possess either alcohols or amines or carboxylic acids or esters or nitriles, thereby opening up possibilities for varied studies. Architecturally-driven effects are searched constantly while integrating dendrimers in wide ranging studies. With knowledge that un-functionalized PAMAM and PPI dendrimers show fluorescence properties, we tested the PETIM dendrimers for their luminescence property. The photophysical properties of PETIM dendrimers presenting esters, alcohols, acid salts, nitriles and amines at their peripheries were studied. The anomalous fluorescence arising from alcohol terminated PETIM dendrimers (Figure 3) was established through a series of experiments. Various experimental parameters including pH, viscosity of the solvents, aging, temperature and concentration were used to assess the photochemical properties of the PETIM dendrimers. It was observed that generations 1 to 5 absorbed in the region of 260-340 nm, in MeOH and in aqueous solutions. Excitation of the OH-terminated dendrimer solutions at 330 nm led to an emission at ~390 nm (Figure 4). Dendrimers presenting esters, acid salts and amines at their peripheries also exhibited a similar excitation and emission wavelengths. An increase in the fluorescence intensity was observed at low pH and with more viscous solvents. Lifetime measurements showed at least two species (~2.5 and ~7.0 ns) were responsible for the emission. The quenching of the fluorescence originating from the PETIM dendrimers by inorganic anions was also established in the present study. The periodate, persulfate, perchlorate and nitrite anions quenched the fluorescence efficiently among several anions tested. An ‘oxygen-interacted moiety’, in addition to altered hydrogen bonding properties of the dendrimers, was presumed contribute to the anomalous fluorescence behavior. Chapter 3 of the Thesis elaborates photophysical studies of several PETIM dendrimers. Incorporation of catalytically active moieties at the peripheries of dendrimers was identified as an important avenue, in order to explore the effect of the dendritic architectures on the catalytic activities of chosen catalytic moieties. In order to assess the effect of the dendritic scaffold, in relation to both numbers and locations of the catalytic units, an effort was undertaken to study the catalytic activities of catalytic units, that are present in varying numbers within one generation. Partial and full phosphine-metal complex substituted three generations of dendritic catalysts were synthesized, by using a selective alkylation as a key step. The number of the primary amine groups led to define the number of phosphine groups at the peripheries. The primary amine groups were, in turn, prepared by a Michael addition of acrylonitrile and hydroxyl groups, followed by a reduction of the nitrile moieties to the corresponding amines. The first and the second generation PETIM dendrimers utilized in this study present up to four and eight hydroxyl groups at their peripheries. A partial etherification was exercised in order to mask few hydroxyl groups, useful to prepare the partially substituted phosphine groups. Subsequent Michael addition of acrylonitrile with remaining hydroxyl groups, to afford the nitrile terminated dendrimers, and a metal-mediated reduction of the nitrile to amine led to the required number of amine functionalized dendrimers. Functionalization of the peripheries with alkyldiphenyl phosphine moieties was conducted through a Mannich reaction of the amines with formaldehyde and diphenyl phosphine. The subsequent metal complexation with Pd(COD)Cl2 afforded a series of phosphine-Pd(II) complexes, for the zero, first and second generation PETIM dendrimers. Figure 5 shows the molecular structures of a partially and a fully substituted second generation dendrimer. Catalytic activities of the dendrimer-Pd(II) complexes were assessed in both Heck and Suzuki coupling reactions. A C-C bond forming reactions were studied, with the series of dendritic-Pd(II) catalysts, using Cs2CO3 as a base and at 40 oC. In an overall observation, it was found that an individual catalytic site showed a considerable increase in the catalytic activity when it was present in multiple numbers than as a single unit within the same generation (Figure 6). Figure 6. Bar diagrams of (a) Heck reaction and (b) Suzuki reaction, employing the dendritic catalysts 1 - 11. The Heck coupling reaction involved tert-butyl acrylate and iodobenzene, and the Suzuki coupling reaction involved phenyl boronic acid and iodobenzene. The observations revealed that: (i) the higher generation dendritic catalysts exhibited higher catalytic activities per catalytic site and (ii) the dendritic scaffold has a role in enhancing the activities of the individual catalytic sites. The catalysis study identified the catalytic activities that occurred when a series of catalysts within a given dendrimer generation was used. Such a study is hitherto unknown and the observations of this study address some of the pertinent queries relating to the efficiencies of multivalent dendritic catalysts. Chapter 4 of the Thesis describes the synthesis and characterization of series of organometallic PETIM dendrimer and studies of their catalytic activities. Studies on solid-supported catalysis present a significant importance in heterogeneous organometallic catalysis. Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the solid supports with suitable chelating ligands is emerging as a viable strategy to circumvent not only the pertinent metal catalyst deterioration and leaching limitations, but also to stabilize the metal particles and to adjust their catalytic efficiencies. In exploring heterogeneous organometallic catalysis, functionalization of silica with a first generation phosphinated dendritic amine was undertaken. The synthetic scheme adopted to synthesize dendrimer functionalized silica is shown in Scheme 1. The reaction of the chloropropylated silica 4 with amine 3 was conducted in CHCl3. Complexation of the functionalized silica 5 with Pd(COD)Cl2 led to isolation of Pd(II)- impregnated silica. Scheme 1. Preparation of Pd nanoparticles stabilized by functionalized silica. It was anticipated that the ratio of phosphine to Pd(II) would be 1:0.5, resulting from a bidendate binding of the phosphine ligand to Pd metal. The observed ICP-OES result indicated that all phosphine ligands did not chelate the metal. With the desire to obtain the metal nanoparticles, the metal complex was subjected to a reduction, which was performed by conditioning 5-Pd(II) complex in EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85 % size distribution between 2-4 nm (Figure 7). Analyses of the Pd(0) impregnated in dendrimer functionalized silica were performed using NMR, XPS spectroscopies, elemental analysis and microscopies. Figure 7. Transmission electron micrograph and histogram of 6, obtained after treatment with EtOH. The Pd-nanoparticle stabilized silica was used in the hydrogenation of several α, β-unsaturated olefins. The catalyst recycling experiments were conducted more than 10 times, and no loss in the catalytic activities were observed. Chapter 5 describes the functionalization of the silica support with diphenylphosphinomethyl-derivatized dendritic amine, palladium nanoparticle formation and the catalysis studies. Overall, the Thesis establishes the synthesis of larger generation PETIM dendrimers, studies of their anomalous fluorescence behavior, organometallic catalysis in solution, as well as, in heterogeneous conditions, pertaining to the C-C bond forming reactions and hydrogenation reactions. (For figure, graph and structural formula pl see the pdf file)

Page generated in 0.0603 seconds