• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coevolution of plastid genomes and transcript processing pathways in photosynthetic alveolates

Dorrell, Richard G. January 2014 (has links)
Following their endosymbiotic uptake, plastids undergo profound changes to genome content and to their associated biochemistry. I have investigated how evolutionary transitions in plastid genomes may impact on biochemical pathways associated with plastid gene expression, focusing on the highly unusual plastids found in one group of eukaryotes, the alveolates. The principal photosynthetic alveolate lineage is the dinoflagellate algae. Most dinoflagellate species harbour unusual plastids derived from red algae. The genome of this plastid has been fragmented into small, plasmid-like elements termed “minicircles”. Transcripts of this genome receive a 3’ poly(U) tail and, in some species, undergo extensive sequence editing. Some dinoflagellates have replaced their original plastids with others, in a process termed “serial endosymbiosis”. The major non-photosynthetic alveolates are the apicomplexans, which include the malaria parasite Plasmodium. Apicomplexans are descended from free-living algae and possess a vestigial plastid, which originated through the same endosymbiosis as the ancestral red dinoflagellate plastid. This plastid has lost all genes involved in photosynthesis and does not possess a poly(U) tail addition pathway. I have investigated the consequences of the fragmentation of the red algal dinoflagellate plastid genome on plastid transcription. I have characterised non-coding transcripts in plastids of the dinoflagellate Amphidinium carterae, including the first evidence for antisense transcripts in an algal plastid. Antisense transcripts in dinoflagellate plastids do not receive poly(U) tails, suggesting that poly(U) tail addition may play a role in strand discrimination during transcript processing. I have additionally characterised transcript processing in dinoflagellate plastids that were acquired through serial endosymbiosis. I have shown that poly(U) tail addition and editing occur in the haptophyte-derived serial endosymbionts of the fucoxanthin-containing dinoflagellates Karenia mikimotoi and Karlodinium veneficum. This is the first evidence that plastids acquired through serial endosymbiosis may be supported by pathways retained from previous symbioses. Transcript editing constrains the phenotypic consequences of divergent mutations in fucoxanthin plastid genomes, whereas poly(U) tail addition plays a central role in recognising and processing translationally functional fucoxanthin plastid mRNAs. I have additionally shown that certain genes within fucoxanthin plastids are located on minicircles. This demonstrates convergent evolution in the organisation of the fucoxanthin and red algal dinoflagellate plastid genomes since their endosymbiotic acquisition. Finally, I have investigated transcript processing in the algae Chromera velia and Vitrella brassicaformis. These species are closely related to apicomplexans but are still photosynthetic and apply poly(U) tails to plastid transcripts, as with dinoflagellates. I have shown that poly(U) tails in these species are preferentially associated with translationally functional mRNAs of photosynthesis genes. This is the first plastid transcript processing pathway documented to target a specific functional gene category. Poly(U) tail addition may direct transcript cleavage and allow photosynthesis gene transcripts to accumulate to high levels. The loss of this pathway from ancestors of apicomplexans may have contributed to their transition from photosynthesis to parasitism.
2

Probing the molecular recognition of a DNA-RNA hybrid duplex

Wheelhouse, Richard T., Garbett, N.C., Buurma, N.J., Chaires, J.B. 2010 March 1929 (has links)
Yes / Curiouser and curiouser! A biarylpyrimidine ligand (see picture: N blue, H cyan, S yellow) shows a marked structure and sequence selectivity for the poly(dA)⋅poly(rU) hybrid duplex. An intercalative binding site was discovered where the ligand occupies a surprising ten base pairs. A strong correlation between hybrid duplex and DNA triplex binding indicates new directions for ligand design.

Page generated in 0.0372 seconds