• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entwicklung von DNA-basierten Multichromophoren und Donor-Akzeptor-Systemen zur Untersuchung des Ladungstransfers in DNA

Barbarič, Janez January 2008 (has links)
Regensburg, Univ., Diss., 2008
2

Structure-Dependent Ultrafast Relaxation Dynamics in Multichromophoric Systems / Strukturabhängigkeit ultraschneller Relaxationsdynamik in multichromophoren Systemen

Koch, Federico Juan January 2016 (has links) (PDF)
Time-resolved spectroscopy allows for analyzing light-induced energy conversion and chromophore–chromophore interactions in molecular systems, which is a prerequisite in the design of new materials and for improving the efficiency of opto-electronic devices. To elucidate photo-induced dynamics of complex molecular systems, transient absorption (TA) and coherent two-dimensional (2D) spectroscopy were employed and combined with additional experimental techniques, theoretical approaches, and simulation models in this work. A systematic series of merocyanines, synthetically varied in the number of chromophores and subsitution pattern, attached to a benzene unit was investigated in cooperation with the group of Prof. Dr. Frank Würthner at the University of Würzburg. The global analysis of several TA experiments, and additional coherent 2D spectroscopy experiments, provided the basis to elaborate a relaxation scheme which was applicable for all merocyanine systems under investigation. This relaxation scheme is based on a double minimum on the excited-state potential energy surface. One of these minima is assigned to an intramolecular charge-transfer state which is stabilized in the bis- and tris-chromophoric dyes by chromphore–chromophore interactions, resulting in an increase in excited-state lifetime. Electro-optical absorption and density functional theory (DFT) calculations revealed a preferential chromophore orientation which compensates most of the dipole moment of the individual chromophores. Based on this structural assignment the conformationdependent exciton energy splitting was calculated. The linear absorption spectra of the multi-chromophoric merocyanines could be described by a combination of monomeric and excitonic spectra. Subsequently, a structurally complex polymeric squaraine dye was studied in collaboration with the research groups of Prof. Dr. Christoph Lambert and Prof. Dr. Roland Mitric at the University of Würzburg. This polymer consists of a superposition of zigzag and helix structures depending on the solvent. High-level DFT calculations confirmed the previous assignment that zigzag and helix structures can be treated as J- and H-aggregates, respectively. TA experiments revealed that in dependence on the solvent as well as the excitation energy, ultrafast energy transfer within the squaraine polymer proceeds from initially excited helix segments to zigzag segments or vice versa. Additionally, 2D spectroscopy confirmed the observed sub-picosecond dynamics. In contrast to other conjugated polymers such as MEH-PPV, which is investigated in the last chapter, ultrafast energy transfer in squaraine polymers is based on the matching of the density of states between donor and acceptor segments due to the small reorganization energy in cyanine-like chromophores. Finally, the photo-induced dynamics of the aggregated phase of the conjugated polymer MEH-PPV was investigated in cooperation with the group of Prof. Dr. Anna Köhler at the University of Bayreuth. Our collaborators had previously described the aggregation of MEH-PPV upon cooling by the formation of so-called HJ-aggregates based on exciton theory. By TA measurements and by making use of an affiliated band analysis distinct relaxation processes in the excited state and to the ground state were discriminated. By employing 2D spectroscopy the energy transfer between different conjugated segments within the aggregated polymer was resolved. The initial exciton relaxation within the aggregated phase indicates a low exciton mobility, in contrast to the subsequent energy transfer between different chromophores within several picoseconds. This work contributes by its systematic study of structure-dependent relaxation dynamics to the basic understanding of the structure-function relationship within complex molecular systems. The investigated molecular classes display a high potential to increase efficiencies of opto-electronic devices, e.g., organic solar cells, by the selective choice of the molecular morphology. / Zeitaufgelöste Spektroskopie ermöglicht die Untersuchung lichtinduzierter Energietransferprozesse und molekularer Wechselwirkungen. Derartige Ergebnisse bilden wiederum die Grundlage für die Entwicklung von Synthesestrategien für neuartige Materialien sowie für effizientere optoelektronische Anwendungen. Um die lichtinduzierte Dynamik komplexer molekularer Systeme aufzuklären, wurden die Techniken der transienten Absorption (TA) und der kohärenten zweidimensionalen (2D) Spektroskopie mit weiteren experimentellen Messungen sowie theoretischen Ansätzen und Simulationen kombiniert. In Kooperation mit der Forschungsgruppe von Prof. Dr. FrankWürthner an der Universität Würzburg wurde eine molekulare Serie von Merocyaninen untersucht, die sich in der Anzahl der Chromophore und dem Substitutionsmuster an einem Benzolring unterscheiden. Eine globale Analyse der TA-Experimente für die verschiedenen Moleküle der Serie sowie weitere kohärente 2D-Spektroskopie-Experimente ermöglichten es, ein Relaxationsmodell zu ermitteln, das für alle untersuchten Merocyaninsysteme anwendbar ist. Dieses Relaxationsmodell basiert auf einem doppelten Minimum in der Potentialfläche des ersten angeregten Zustands. Eines dieser Minima wurde einem intramolekularen Ladungstransferzustand zugeordnet, welcher durch die Wechselwirkung benachbarter Chromophore stabilisiert wird und dadurch einen Anstieg der Lebensdauer des angeregten Zustands bewirkt. Zusätzliche elektrooptische Absorptionsmessungen in Kombination mit Ergebnissen der Dichtefunktionaltheorie offenbarten eine bevorzugte relative Chromophororientierung, die das Dipolmoment eines einzelnen Chromophors weitestgehend kompensiert. Basierend auf dieser Strukturbestimmung wurde eine strukturabhängige Exzitonenaufspaltungsenergie ermittelt und mit der Aufspaltung in den linearen Absorptionsspektren verglichen. Die linearen Absorptionsspektren der multichromophoren Merocyanine können durch eine Kombination von monomerischen und exzitonischen Beiträgen beschrieben werden, was eine gewisse strukturelle Flexibilität erfordert. In einer weiteren Kooperation mit den Gruppen von Prof. Dr. Christoph Lambert und Prof. Dr. Roland Mitric der Universität Würzburg wurde ein strukturell komplexer, polymerer Squarainfarbstoff untersucht. Dieses Polymer besteht aus einer Superposition von Zickzack- und Helixstrukturen, welche lösungsmittelabhängig ist. Rechnungen basierend auf neuesten Methoden der Dichtefunktionaltheorie bestätigten die vorherige Zuordnung, dass Zickzack- und Helixstrukturen als J- und H-Aggregate behandelt werden können. Mittels transienter Absorption konnte ermittelt werden, dass in Abhängigkeit des Lösungsmittels sowie der Anregungsenergie ultraschneller Energietransfer innerhalb des Squarain-Polymers entweder von zunächst angeregten Helix- zu Zickzacksegmenten stattfindet oder von Zickzack- zu Helixsegmenten. Zusätzlich konnte die Subpikosekundendynamik durch die kohärente 2D-Spektroskopie bestätigt werden. Im Gegensatz zu anderen konjugierten Polymeren wie MEH-PPV, welches im letzten Kapitel dieser Arbeit behandelt wird, basiert der ultraschnelle Energietransfer in Squarainpolymeren auf dem energetischen Überlapp der Zustandsdichten von Donor- und Akzeptorsegmenten, welcher auf die geringe Reorganisationsenergie in cyaninähnlichen Farbstoffen beruht. Abschließend wurde die lichtinduzierte Dynamik der aggregierten Phase des konjugierten Polymers MEH-PPV in Kooperation mit der Gruppe von Prof. Dr. Anna Köhler von der Universität Bayreuth untersucht. Unsere Kooperationspartner hatten zuvor die Aggregation von MEH-PPV bei Abkühlung durch die Formation von sogenannten HJ-Aggregaten, welche auf der Exzitonentheorie beruhen, beschrieben. Durch transiente Absorptionsmessungen und einer zugehörigen Bandenanalyse konnte zwischen Relaxationsprozessen im angeregten Zustand und zurück zum Grundzustand unterschieden werden. Die Anwendung der kohärenten 2D-Spektroskopie ermöglichte es, Energietransferprozesse zwischen konjugierten Segmenten des aggregierten Polymers aufzuklären. Die anfängliche Exzitonenrelaxation innerhalb der aggregierten Phase deutet auf eine geringe Mobilität der Exzitonen hin, welche im Gegensatz zu den anschließenden Energietransferprozessen zwischen unterschiedlichen Chromophoren innerhalb einiger Pikosekunden steht. Diese Arbeit trägt durch eine systematische Untersuchung der strukturabhängigen Relaxationsdynamik zum grundlegenden Verständnis des Verhältnisses zwischen Struktur und Funktion von komplexen molekularen Systemen bei. Die untersuchten Molekülklassen weisen dabei ein hohes Potential auf, um durch gezielte Wahl der Morphologie zu einer Steigerung von Effizienzen in optoelektronischen Anwendungen, wie beispielsweise organischen Solarzellen, beizutragen.
3

Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems / Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme

Selig-Parthey, Ulrike January 2012 (has links) (PDF)
Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. / Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess.

Page generated in 0.077 seconds