• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor

Zhang, Yan 22 December 2005 (has links)
Fiber-optic Fabry-Perot interferometric (FFPI) sensors have been widely used due to their high sensitivity, ease of fabrication, miniature size, and capability for multiplexing. However, direct measurement of self-assembled thin films, receptor immobilization process or biological reaction is limited in the FFPI technique due to the difficulty of forming Fabry-Perot cavities by the thin film itself. Novel methods are needed to provide an accurate and reliable measurement for monitoring the thin-film growth in the nanometer range and under various conditions. In this work, two types of fiber-optic multicavity Fabry-Perot interferometric (MFPI) sensors with built-in temperature compensation were designed and fabricated for thin-film measurement, with applications in chemical and biological sensing. Both the tubing-based MFPI sensor and microgap MFPI sensor provide simple, yet high performance solutions for thin-film sensing. The temperature dependence of the sensing cavity is compensated by extracting the temperature information from a second multiplexed cavity. This provides the opportunity to examine the thin-film characteristics under different environment temperatures. To demonstrate the potential of this structure for practical applications, immunosensors were fabricated and tested using these structures. Self-assembled polyelectrolytes served as a precursor film for immobilization of antibodies to ensure they retain their biological activity. This not only provides a convenient method for protein immobilization but also presents the possibility of increasing the binding capacity and sensitivity by incorporating multilayers of antibodies into polyelectrolyte layers. The steady-state measurement demonstrated the surface concentration and binding ratio of the immunoreaction. Analysis of the kinetic binding profile provided a fast and effective way to measure antigen concentration. Monitoring the immunoreaction between commercially available immunoglobulin G (IgG) and anti-IgG demonstrated the feasibility of using the MFPI sensing system for immunosensing applications. / Ph. D.
2

Layer-by-layer Self-assembly Membranes for Solvent Dehydration by Pervaporation

Zhang, Ying January 2014 (has links)
In this study, polyelectrolyte membranes were prepared by layer-by-layer self-assembly on top of an interfacially polymerized polyamide substrate, and these thin-film-composite membranes were studied for pervaporative dehydration of ethylene glycol, ethanol and isopropanol. The performance of composite membranes based on polyethylenimine/poly(acrylic acid) (PEI/PAA) multilayers on a polyamide substrate showed good selectivity and stability for ethylene glycol dehydration. In order to understand the formation process of the polyelectrolyte multilayers, the growth of polyelectrolyte multilayers fabricated on the inner surface of cuvette was investiagted. The membrane surface became increasingly hydrophilic with an increase in the number of polyelectrolyte double layers, which favored water permeation for pervaporative dehydration of organic solvents. Water contact angle on the membrane surface decreased from 68?? to 20?? when 7 polyelectrolyte bilayers were deposited on the polyamide substrate. Although the (PEI/PAA) based polyelectrolyte membranes showed good performance for dehydration of ethylene glycol, these membranes did not perform well for the dehydration of ethanol and isopropanol at relatively high feed alcohol concentrations. This was found to be caused by insufficient stability of PEI/PAA bilayers and the polyamide substrate in the ethanol and isopropanol. To improve the performance of the composite membranes for dehydration of ethanol and isopropanol, the outermost surface layer was deposited with PEI, followed by crosslinking. A further improvement in the membrane selectivity was accomplished by substituting the PEI with partially protonated chitosan in the last few polyelectrolyte bilayers during membrane fabrication. It was demonstrated that using interfacially polymerized polyamide membrane as a substrate, polyelectrolyte membranes with less than 8 bilayers could be fabricated for the dehydration of alcohol and diol. This represents a siginificant advancement as a large number of polyelectrolyte bilayers (as many as 60) are often needed. Glutaraldehyde crosslinked polyelectrolyte self-assembled membranes comprising of chitosan and PAA were also prepared for isopropanol/water separation. The resulting membrane showed stable performance with good permeation flux and separation factor. The effects of crosslinking conditions (e.g., concentration and temperature of crosslinking agent, and crosslinking time) on the membrane performance were studied. Alternatively, using PEI as polycation, when anionic PAA was substituted with alginate in the last few polyelectrolyte bilayers during membrane fabrication, stable membranes with a good performance were obtained without the need of chemical crosslinking. The polyethylenimine/alginate self-assembly membranes showed good selectivity and stability for dehydration of ethanol. For instance, a permeation flux of 0.24 kg/(??? h) and a separation factor of 206 were obtained at room temperature at 10 wt% feed water concentration with a membrane comprising of 10 double layers of polyelectrolytes.

Page generated in 0.0797 seconds