• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d'énergie

Eddiai, Adil 24 May 2013 (has links) (PDF)
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d'explorer la potentialité des polymères électro-actifs pour une application de récupération d'énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d'une caractérisation électrique et mécanique de ces polymères et composites afin d'évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d'essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d'énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d'énergie récupérée. Ainsi qu'une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l'étude de l'efficacité de la conversion électromécanique pour la récupération d'énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l'amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d'assurer un meilleur rendement énergétique.
2

Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d’énergie / Electro-active polymers : Modeling and characterization and its application to energy harvesting

Eddiai, Adil 24 May 2013 (has links)
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d’explorer la potentialité des polymères électro-actifs pour une application de récupération d’énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d’une caractérisation électrique et mécanique de ces polymères et composites afin d’évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d’essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d’énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d’énergie récupérée. Ainsi qu’une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l’étude de l’efficacité de la conversion électromécanique pour la récupération d’énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l’amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d’assurer un meilleur rendement énergétique. / The concept of energy harvesting generally relates to the process of using ambient energy, which is converted, primarily (but not exclusively) into electrical energy in order to power small and autonomous electronic devices. Recent trends in both industrial and research fields have focused on electro-active polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, high flexibility, and processability. The purpose of this research work is to explore the potential of electro-active polymers for application of mechanical energy harvesting. At first, a synthesis of the composite based on polyurethane (PU) and P (VDF-TrFE-CFE) was performed, followed by electrical and mechanical characterization of these polymers and composites in order to evaluate their intrinsic parameters. The second part of this thesis concerns electromechanical characterization of these polymers. An electromechanical analytic modeling is detailed in order to determine the physical behavior of electrostrictive polymers and the variations of intrinsic parameters. This modeling is validated by a series of tests using a test bench. The last part of this work consists to evaluate the electromechanical performance of electrostrictive polymers for the mechanical energy harvesting. Two new techniques are tested in order to maximize the density of energy recovered. As well as a comparison against those classic has been performed. Excellent potential of these techniques for energy harvesting has been demonstrated. The second point is about the study of the electromechanical conversion efficiency for scavenging mechanical energy using spectral analysis FFT. It was shown that this method allows predicting the energy efficiency of our polymers, in accordance with the results predicted by the model. The last point focuses on improving the efficiency of electromechanical conversion by using cellular polypropylene electrets to ensure better energy efficiency.
3

Modification of electrostrictive polymers and their electromechanical applications / Composites à base de polymères electrostrictifs et leurs applications électromécanique

Yin, Xunqian 07 May 2015 (has links)
Les polymères électroactifs (PAE), sont des matériaux permettant de réaliser une conversion entre l'énergie électrique et mécanique. L'objet de ce travail est de proposer des procédés de modifications des terpolymères électrostrictifs par voies composites basés sur différentes approches dans le but d’améliorer les performances électromécaniques et de développer des applications à partir de ces matériaux modifiés. Dans un premier temps, un nano-composite à base de terpolymère et de noir de carbone a été préparé pour améliorer la permittivité diélectrique. Dans un deuxième temps, sur la base de la nature hétérogène de terpolymère semi-cristallin ainsi que du rôle important que la polarisation interfaciale joue sur la réponse diélectrique et électromécanique, une faible quantité d’agent plastifiant (bis (2-ethylhexyl) phalate (DEHP)) a été introduite dans le terpolymère électrostrictif afin de former un composite tout organique permettant l'amélioration des performances électromécaniques. Enfin, l’utilisation de ces matériaux modifiés dans deux applications spécifiques a été étudiée: La récupération de l'énergie mécanique et une pompe microfluidique sans valve. / Electroactive polymers (EAPs), which can realize the conversion between electrical and mechanical energy, have been emerging as one of the most interesting smart materials in the past two decades due to their low density, excellent mechanical properties, ease of processing, low price and potential applications in the fields of sensors, actuators, generators, biomimetic robots and so on. The object of this work is to modify electrostrictive terpolymers with different approaches to improve the electromechanical performances and to develop some applications based on modified terpolymers. Firstly, an organic/inorganic (terpolymer/carbon black) nanocomposite was prepared to improve the dielectric permittivity based on the percolation theory. Secondly, based on the heterogeneous nature of semi-crystalline terpolymer and the important role that interface polarization plays for dielectric and electromechanical response, small molecular plasticizer bis(2-ethylhexyl) phalate (DEHP) was introduced into electrostrictive terpolymer to form an all-organic polymer composite with improved electromechanical performances. Finally, two applications including mechanical energy harvesting and microfluidic pump based on DEHP modified terpolymers were investigated.

Page generated in 0.0764 seconds