• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 32
  • 29
  • 24
  • 20
  • 18
  • 18
  • 18
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Immobilization of Inorganic Nanoparticles on Responsive Polymer Brushes

Gupta, Smrati 19 September 2008 (has links)
Exploitation of well defined responsive polymer brushes for direct and controlled immobilization of metal/semiconductor nanoparticles on macroscopic surfaces has been demonstrated. The employed approach offers the possibility of the organization of a variety of inorganic nanoparticles by irreversible bonding and homogenous distribution on an underlying substrate. The immobilization process has been realized by chemical grafting of a variety of polymer brushes on a suitable substrate followed by the attachment of pre-/in-situ formed nanoparticles exploiting the chemical/physical interactions between surface functionalities of nanoparticles and polymer chain segments. A number of polymer brushes including poly (acrylic acid), polystyrene, poly (2-vinyl pyridine) and poly (N-isopropyl acrylamide) brushes have been prepared on silicon substrate by the “grafting to” approach. A variety of inorganic nanoparticles such as quantum dots (CdTe) noble metals (gold and silver) and magnetic (Fe3O4) were immobilized on macroscopic surfaces to impart them photo luminescent, catalytic or magnetic properties. In addition, responsiveness of grafted polymer brushes in terms of variation in thickness (due to changes in chain conformation) as a function of external stimuli such as solvent and pH allowed to use the resulting polymer brush-nanoparticles nanoassemblies in the fabrication of nanosensors. The design of fabricated nanosensors is based on the modulation in the interparticle distance of immobilized nanoparticles due to swelling/deswelling of underlined polymer brushes in response to some external trigger.
22

SURFACE AND INTERFACE STRUCTURE OF DIBLOCK COPOLYMER BRUSHES

Akgun, Bulent 02 October 2007 (has links)
No description available.
23

Interface Structure of Diblock Copolymer Brushes and Surface Dynamics of Homopolymer Brushes and Bilayers of Untethered Chains on Brushes

Uğur, Gökce 03 August 2011 (has links)
No description available.
24

Biofunctionalization of Polymer Brush Surfaces

Psarra, Evmorfia 17 November 2015 (has links) (PDF)
Surface engineering of tailored materials with adjustable characteristics in relation to biological environment, is one of the main prerequisites for biotechnological applications. In recent years, advanced surface coatings in the nanometer range have drawn big attention. A special category of this group are stimuli responsive polymers tethered by one functional end to the surface. When the surface grafting density is big enough, the polymer chains are forced to stretch away from the interface due to excluded volume effects, creating a so called polymer brush. Nano-scaled polymer brushes are advantageous due to their nanostructure, which can be comparable to biological species, and their collaborative response to external stimuli. Moreover, the material design parameters such as chemistry, surface topography, charge, and surface wettability can be adjusted by using the appropriate polymer, or a combination of polymers with respect to the desired material performance. In case of binary polymer brushes, the materials' properties are switched between the properties of two constituent polymers. Besides, upon switching of external stimuli, biomodified binary polymer brushes can hide or expose biofunctionalities, on demand. Hence, they are classified as smart biomaterials' surface coatings.
25

Tailoring Surface Properties of Bio-Fibers via Atom Transfer Radical Polymerization

Lindqvist, Josefina January 2007 (has links)
The potential use of renewable, bio-based polymers in high-technological applications has attracted great interest due to increased environmental concern. Cellulose is the most abundant biopolymer resource in the world, and it has great potential to be modified to suit new application areas. The development of controlled polymerization techniques, such as atom transfer radical polymerization (ATRP), has made it possible to graft well-defined polymers from cellulose surfaces. In this study, graft-modification of cellulose substrates by ATRP was explored as a tool for tailoring surface properties and for the fabrication of functional cellulose surfaces. Various native and regenerated cellulose substrates were successfully graft-modified to investigate the effect of surface morphology on the grafting reactions. It was found that significantly denser polymer brushes were grafted from the native than from the regenerated cellulose substrates, most likely due to differences in surface area. A method for detaching the grafted polymer from the substrate was developed, based on the selective cleavage of silyl ether bonds with tetrabutylammonium fluoride. The results from the performed kinetic study suggest that the surface-initiated polymerization of methyl methacrylate from cellulose proceeds faster than the concurrent solution polymerization at low monomer conversions, but slows down to match the kinetics of the solution polymerization at higher conversions. Superhydrophobic and self-cleaning bio-fiber surfaces were obtained by grafting of glycidyl methacrylate using a branched graft-on-graft architecture, followed by post-functionalization to obtain fluorinated polymer brushes. AFM analysis showed that the surface had a micro-nano-binary structure. It was also found that superhydrophobic surfaces could be achieved by post-functionalization with an alkyl chain, with no use of fluorine. Thermo-responsive cellulose surfaces have been prepared by graft-modification with the stimuli responsive polymer poly(N-isopropylacrylamide) (PNIPAAm). Brushes of poly(4-vinylpyridine) (P4VP) rendered a pH-responsive cellulose surface. Dual-responsive cellulose surfaces were achieved by grafting block-copolymers of PNIPAAm and P4VP. / QC 20100804
26

Dissipative Prozesse an Oberflächen

Nitsche, David 14 May 2013 (has links) (PDF)
In der Arbeit wird das Reibungsverhalten an Polymerbürsten im nanoskopischen und makroskopischen Kontakt beschrieben. Besonderes Augenmerk liegt auf den durch Reibung hervorgerufenen Deformationen.
27

Modulating Electro-osmotic Flow with Polymer Coatings

Hickey, Owen 12 January 2012 (has links)
Micro- and nano-fluidic devices represent an exciting field with a wide range of possible applications. These devices, typically made of either silica or glass, ionize when placed in contact with water. Upon the application of an electric field parallel to the wall, a flow is produced by the charged walls called the electro-osmotic flow (EOF). Since electric fields are so often used as the driving force in these devices, EOF is an extremely common phenomenon. For this reason it is highly desirable to be able to control EOF in order to optimize the functioning of these devices. One method which is quite common experimentally is the modification of the surface using polymer coatings. These coatings can be either adsorbed or grafted, and charged or neutral. The first part of this thesis looks at the role of neutral adsorbed polymer coatings for the modulation of EOF. Specifically our simulation results show that for adsorbed coatings made from a dilute polymer solution the strongest quenching of EOF is found for an adsorption strength at the phase transition for adsorption of the polymers. Further evidence is presented that shows that by using a high density of polymer solution and a polymer which has a strong attraction to the surface a very thick polymer layer can be created. Next the case of charged grafted polymer coatings is examined. The variation of the EOF with respect to several key parameters which characterize the polymer coating is investigated and compared to theory. The prediction that the electrophoretic velocity of the polymers is the same as the EOF generated by a coating made up of the same polymers is found to be false though the two values are quite close. The last section presents results which show how hydrodynamic interactions in charged polymer systems can be modeled mesoscopically without the use of explicit charges by forcing a slip between monomers and the surrounding fluid. This model is validated by simulating some surprising predictions made in the literature such as an object with no net charge having a non-zero force when subjected to an electric field, and how the velocity can even be perpendicular to the applied electric field. The thesis can be roughly divided into two topics: using polymer coatings to modulate EOF, and the free solution electrophoresis of polyelectrolytes. While EOF and free solution electrophoresis might seem unrelated it will be shown that the concepts are the same in both cases. In fact while not investigated in this thesis, the mesoscopic simulation methods for electrophoresis could be applied to the modulation of EOF with polymer coatings allowing for the simulation of longer length and time scales or more complex systems such as heterogeneously grafted colloids.
28

Modulating Electro-osmotic Flow with Polymer Coatings

Hickey, Owen 12 January 2012 (has links)
Micro- and nano-fluidic devices represent an exciting field with a wide range of possible applications. These devices, typically made of either silica or glass, ionize when placed in contact with water. Upon the application of an electric field parallel to the wall, a flow is produced by the charged walls called the electro-osmotic flow (EOF). Since electric fields are so often used as the driving force in these devices, EOF is an extremely common phenomenon. For this reason it is highly desirable to be able to control EOF in order to optimize the functioning of these devices. One method which is quite common experimentally is the modification of the surface using polymer coatings. These coatings can be either adsorbed or grafted, and charged or neutral. The first part of this thesis looks at the role of neutral adsorbed polymer coatings for the modulation of EOF. Specifically our simulation results show that for adsorbed coatings made from a dilute polymer solution the strongest quenching of EOF is found for an adsorption strength at the phase transition for adsorption of the polymers. Further evidence is presented that shows that by using a high density of polymer solution and a polymer which has a strong attraction to the surface a very thick polymer layer can be created. Next the case of charged grafted polymer coatings is examined. The variation of the EOF with respect to several key parameters which characterize the polymer coating is investigated and compared to theory. The prediction that the electrophoretic velocity of the polymers is the same as the EOF generated by a coating made up of the same polymers is found to be false though the two values are quite close. The last section presents results which show how hydrodynamic interactions in charged polymer systems can be modeled mesoscopically without the use of explicit charges by forcing a slip between monomers and the surrounding fluid. This model is validated by simulating some surprising predictions made in the literature such as an object with no net charge having a non-zero force when subjected to an electric field, and how the velocity can even be perpendicular to the applied electric field. The thesis can be roughly divided into two topics: using polymer coatings to modulate EOF, and the free solution electrophoresis of polyelectrolytes. While EOF and free solution electrophoresis might seem unrelated it will be shown that the concepts are the same in both cases. In fact while not investigated in this thesis, the mesoscopic simulation methods for electrophoresis could be applied to the modulation of EOF with polymer coatings allowing for the simulation of longer length and time scales or more complex systems such as heterogeneously grafted colloids.
29

Investigation of Polymer Systems in Solutions with Electron Microscopy and Scattering Methods / Untersuchung von Polymersystemen in Lösung mittels Transmissionselektronenmikroskopie und Streumethoden

Schellkopf, Leonard 21 May 2015 (has links) (PDF)
This work is focused on the visualization and thus in the aid in finding explanations for the behavior of polymer structures as they exist in solution. For this aim, preparation and imaging techniques based on cryo-TEM protocols were developed for a large variety of polymeric specimens using new commercially available devices and the results were compared with the findings of other means of structural investigations. The systems used in this work were chosen, as their investigations can be adapted to other polymer systems by slight adaptation of the preparation procedures.
30

Modulating Electro-osmotic Flow with Polymer Coatings

Hickey, Owen 12 January 2012 (has links)
Micro- and nano-fluidic devices represent an exciting field with a wide range of possible applications. These devices, typically made of either silica or glass, ionize when placed in contact with water. Upon the application of an electric field parallel to the wall, a flow is produced by the charged walls called the electro-osmotic flow (EOF). Since electric fields are so often used as the driving force in these devices, EOF is an extremely common phenomenon. For this reason it is highly desirable to be able to control EOF in order to optimize the functioning of these devices. One method which is quite common experimentally is the modification of the surface using polymer coatings. These coatings can be either adsorbed or grafted, and charged or neutral. The first part of this thesis looks at the role of neutral adsorbed polymer coatings for the modulation of EOF. Specifically our simulation results show that for adsorbed coatings made from a dilute polymer solution the strongest quenching of EOF is found for an adsorption strength at the phase transition for adsorption of the polymers. Further evidence is presented that shows that by using a high density of polymer solution and a polymer which has a strong attraction to the surface a very thick polymer layer can be created. Next the case of charged grafted polymer coatings is examined. The variation of the EOF with respect to several key parameters which characterize the polymer coating is investigated and compared to theory. The prediction that the electrophoretic velocity of the polymers is the same as the EOF generated by a coating made up of the same polymers is found to be false though the two values are quite close. The last section presents results which show how hydrodynamic interactions in charged polymer systems can be modeled mesoscopically without the use of explicit charges by forcing a slip between monomers and the surrounding fluid. This model is validated by simulating some surprising predictions made in the literature such as an object with no net charge having a non-zero force when subjected to an electric field, and how the velocity can even be perpendicular to the applied electric field. The thesis can be roughly divided into two topics: using polymer coatings to modulate EOF, and the free solution electrophoresis of polyelectrolytes. While EOF and free solution electrophoresis might seem unrelated it will be shown that the concepts are the same in both cases. In fact while not investigated in this thesis, the mesoscopic simulation methods for electrophoresis could be applied to the modulation of EOF with polymer coatings allowing for the simulation of longer length and time scales or more complex systems such as heterogeneously grafted colloids.

Page generated in 0.0562 seconds