• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN AND FABRICATION OF POLYMER-BASED MICROFLUIDIC PLATFORMS FOR BIOMEMS APPLICATIONS

Lai, Siyi 29 January 2003 (has links)
No description available.
2

MICROFLUIDIC DISPENSERS BASED ON STRUCTURALLY PROGRAMMABLE MICROFLUIDIC SYSTEMS (sPROMs)AND THEIR APPLICATIONS FOR μTAS

PUNTAMBEKAR, ANIRUDDHA P. 31 March 2004 (has links)
No description available.
3

Protein Lab-on-a-Chips on Polyer Substrates for Point-of-Care Testing (POCT) of Cardiac Biomarkers

Kai, Junhai 02 October 2006 (has links)
No description available.
4

Microstructures for Chemical Analysis : Design, Fabrication and Characterisation

Svedberg, Malin January 2005 (has links)
<p>The interest for miniaturisation in chemical and biological analysis has increased in recent years. In this work, the design, fabrication and characterisation of tools for microanalysis have been studied. The focus is set on polymer microchips for applications in chemical analysis. The work consists of three parts: design and fabrication of paraffin microactuators, design and fabrication of polymer microchips as interfaces in electrospray ionisation mass spectrometry (ESI-MS), and characterisation of conducting films for fused silica capillaries as interfaces in ESI-MS.</p><p>The principle of the paraffin actuators is based on the volume increase resulting from paraffin melting. Paraffin expansion is utilised to cause membrane deflection. The first plastic microactuator using paraffin as the actuator material was successfully demonstrated.</p><p>The microchips as interfaces in ESI-MS have been designed with the objective that the interface should be as much a part of the microchip as possible, and as to as large extent as possible, be fabricated in the same step as the microchannels. Sheathless electrospray from microchips was demonstrated for the first time. In addition a simplified fabrication process for ESI-MS interfaces in poly(dimethyl siloxane) (PDMS) was developed.</p><p>The degradation of conductive coatings for sheathless ESI-MS on fused silica capillaries was studied. It was shown that electrochemical experiments could successfully be used to simulate the electrospray conditions and predict the failure of different gold coatings.</p><p>It was concluded that a common issue in the fabrication of thermoplastic microchips is the crucial sealing of microchannels and cavities. From this point of view, PDMS is a more advantageous material in microfluidics.</p>
5

Microstructures for Chemical Analysis : Design, Fabrication and Characterisation

Svedberg, Malin January 2005 (has links)
The interest for miniaturisation in chemical and biological analysis has increased in recent years. In this work, the design, fabrication and characterisation of tools for microanalysis have been studied. The focus is set on polymer microchips for applications in chemical analysis. The work consists of three parts: design and fabrication of paraffin microactuators, design and fabrication of polymer microchips as interfaces in electrospray ionisation mass spectrometry (ESI-MS), and characterisation of conducting films for fused silica capillaries as interfaces in ESI-MS. The principle of the paraffin actuators is based on the volume increase resulting from paraffin melting. Paraffin expansion is utilised to cause membrane deflection. The first plastic microactuator using paraffin as the actuator material was successfully demonstrated. The microchips as interfaces in ESI-MS have been designed with the objective that the interface should be as much a part of the microchip as possible, and as to as large extent as possible, be fabricated in the same step as the microchannels. Sheathless electrospray from microchips was demonstrated for the first time. In addition a simplified fabrication process for ESI-MS interfaces in poly(dimethyl siloxane) (PDMS) was developed. The degradation of conductive coatings for sheathless ESI-MS on fused silica capillaries was studied. It was shown that electrochemical experiments could successfully be used to simulate the electrospray conditions and predict the failure of different gold coatings. It was concluded that a common issue in the fabrication of thermoplastic microchips is the crucial sealing of microchannels and cavities. From this point of view, PDMS is a more advantageous material in microfluidics.

Page generated in 0.0943 seconds