• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of full color display based on white polymer light-emitting devices combined with color filters

Huang, Tang-chen 25 January 2008 (has links)
In consideration of fabrication and cost issue, lately White Organic Light-Emitting Device (WOLED) combined with Color Filter (CF) has become one of promising methods to produce full-color OLED displays. This method adopts the same light source so the lifetime and brightness of Red¡BGreen and Blue emissions are similar and there is no concern for color distortion. In addition, there is no mismatch issue of shadow mask alignment during fabrication. This method not only improve the resolution but also be able to make large size FPD (Flat Panel Displays). In this study, we fabricate White Polymer Light-Emitting Device (WPLED) on custom-built CF, and discuss its full-color characteristics after integration. This study contains four portions: 1.)Fabrication and electro-optical analysis of WPLED on ITO glass 2.)Electro-optical analysis of CF glass 3.)Optical simulation¡GEL(Light-Emitting) spectra of WPLED combined with transmissive spectra of CF 4.)Fabrication and electro-optical analysis of WPLED on CF glass
2

Light Emitting Diodes of Heterocyclic Aromatic Rigid-Rod and Coil-Like Polymers

Chang, Chin-Feng 27 June 2001 (has links)
ABSTRACT Optoelectronics of polymer light emitting diode (LED) depends significantly on polymer molecular structure and charge conjugation. This study focused on the optoelectronics of freestanding films and LEDs of a colinear, fully conjugated heterocyclic aromatic rigid-rod polymer (PBT) and its mixtures with a partially conjugated coil-like polymer (Pbi). A deuterated PBTd4 was also mixed with a fully conjugated coil-like polymer (ABPBI) for UV-Vis absorption spectrum, photoluminescence (PL), diodic current-voltage response, and electroluminescence (EL). Rigid-rod PBT was only soluble in strong protic acid. PBT films were processed using methanesulfonic acid. PBT free-standing films showed maximum absorptions at 468 nm and 640 nm; PBTd4 having all hydrogen atoms on the phenylene moiety substituted by deuterium retaining same electron orbitals thus showed same absorption and PL spectra. It was likewise for the PBTd4 and ABPBI mixtures at ABPBI concentrations of 1 % and 10 %. For mixtures of PBT and Pbi, the absorption spectra indicated super- position of individual optical absorption response and no energy transfer. However, PL spectra showed a blue shift with increasing Pbi content. This was attribed for PBT rod-like configuration, or PBT aggregation perturbed by mixing with Pbi. Monolayer LED of Al/PBT/ITO and Al/Pbi/ITO yielded a threshold voltage of 4 V. When PBT/Pbi mixtures of 75/25, 50/50, 25/75, were used as the light emitting layer, the threshold voltage altered to 10 V, 7 V and 17 V, respectively. This threshold voltage deviation from 4 V is due mainly to difference in layer thickness, or phase separation affecting the tunneling effect. To enhance LED stability, an Ag layer was evaporated onto the Al electron injection electrode. For Ag/Al/PBT/ITO devices and mixed PBT/Pbi (75/25,50/50,25/75) devices, the maximum EL wavelength exhibited no systematic change at 753 nm, 714 nm, 727 nm, and 697 nm, respectively, due to using different bias voltage.
3

Electroluminescence of Layer Thickness, Carbon Nano-particle Dopants, and Percolation Threshold Electric Conductivity of Fully Conjugated Rigid-rod Polymer

Chang, Chih-hao 02 July 2010 (has links)
Polymer light emitting diodes (PLED) were using a heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) as an opto-electronically active layer; and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as a hole transporting layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode, respectively. [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) or derivatized multi-wall carbon nano-tube (MWCNT-C18), with great electron transporting ability, was doped into PBO to enhance the performance of PLED devices as well as the thin-film electrical conductivity. The optical length was changed by using different spin coating speeds and durations. From the research, the £fmax of electroluminescence (EL) was blue-shifted as PEDOT:PSS spin coating speed increased for a thinner layer. Once using a higher spin coating speed repeatedly to coat PEDOT:PSS, the £fmax of electroluminescence was red-shifted. If the PEDOT:PSS film thicknesses were similar, the EL spectra were almost the same, independent of device processing scheme. The injection current and EL intensity were enhanced by doping PC61BM or MWCNT- C18. The electric conductivity parallel to film surface (£m¡ü) was increased as the doping concentration increased. Because of the extremely different aspect ratio, the MWCNT-C18 had a lower percolation threshold concentration. Therefore, at a low MWCNT-C18 doping concentration, the injection current and the EL intensity were enhanced compared with those of PC61BM.
4

In-situ Synthesis and Luminescence Emission of Non-fully Conjugated Heterocyclic Aromatic Random Copolymers and Multi-wall Carbon Nanotube Composites

Hsu, Yi-long 08 July 2004 (has links)
Opto-electronics of non-fully conjugated molecules was demonstrated successfully in this research as light emitting diodes (LEDs). A series of benzoxazole poly[2,2-(m-2-hydroxyl phenylene)-4-4¡¦-hexafluoroisopro- pane-bibenzoxazoles] (6F-PBO-OH, Am) and benzimidazole poly[2,2¡¦- (2-hydroxy-o-phenylene)-5,5¡¦-bibenzimiazole] (OH-Pbi, B(1-m)) were copolymerized for coil-like non-fully conjugated poly-(Am-co-B(1-m)) for luminescence investigation. UV-Vis absorption of the non-fully conjugated copolymers showed superposition of individual absorption response from the two chemical components of the copolymer. However, the photoluminescence (PL) and the electroluminescence (EL) emissions had a red shift with increasing OH-Pbi content. It seemed to suggest that OH-Pbi was more charge delocalized than 6F-PBO-OH. In mono-layer LEDs, the diode threshold voltages were about at 2 ~ 3 V and the EL showed a green emission. Tunable emission was not observed in varying the m value of the copolymers. Composites of copolymer, poly(Am-co-B(1-m)) and multi-wall carbon nanotube (MWNT) were in-situ synthesized for mono-layer LED fabrication. Few MWNT aggregation was observed via the field-emission scanning electron microscopy. It was a success in dispersing MWNT in the copolymers. There was a red shift with MWNT addition in the PL and the EL emissions. The diode threshold voltages were about at 2 ~ 5 V and the EL emission still showed a green emission. According to this study, MWNT was inconsequential on the PL and the EL emissions of the copolymers up to 2 wt. %.
5

Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes

Liao, Hung-chi 20 July 2004 (has links)
The focus of this study is mono-layer polymer light emitting diode (PLED). The emitting layer is poly-p-phenylenebenzobisoxazole (PBO). PBO is a fully conjugated heterocyclic aromatic rigid-rod polymer. Anode is indium-tin-oxide (ITO). Cathode is aluminum (Al). We used UV epoxy resin to package PLED devices, then measured current-voltage response, electroluminescence (EL) emission, and device lifetime. We demonstrate that the packaged mono-layer PBO LED reduced its demise from water and oxygen. Device lifetime increased from 1 hour to several hundred hours. At a larger bias voltage or current, emission intensity and device efficiency became higher. But decay rate increased leading to shortened device lifetime. Device temperature appeared linearly with current density. A red shift of the EL emission was observed. The £fmax. of emission spectra moved from 534 nm (initial) to 582 nm (after 100 hrs). After thermal annealing at 120¢J for ten hours, threshold voltage increased from 5 V to 12 V, current density decreased to several 10 mA/cm2, luminous intensity improved several ten times to 10-2 cd/m2, emission color changed from yellow-green to orange, luminous efficiency improved from 10-7 to 10-4 cd/A, but device lifetime declined to less than 20 hrs.
6

Photovoltaic Cells and Light Emitting Diodes of Fully Conjugated Rigid-rod Polymer

Tsai, Jung-lung 24 July 2006 (has links)
Polymer photovoltaic cell (PV cell) utilizes a polymer to absorb photons for generating excitons. When excitons are separated into electrons and holes, the device has the photovoltaic effect. Polymer light emitting diode (PLED) injects electrons and holes respectively from cathode and anode into a polymer emission layer. Some of the electrons and the holes would recombine to induce light emission. This research used a heterocyclic aromatic rigid-rod polymer poly-p-phenylene- benzobisoxazole (PBO) as the opto-electronic layer, and a conducting material of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as the hole transport layer. PV cells were fabricated using indium-tin-oxide (ITO) as anode and aluminium as cathode. Same layer arrangement was applied for PLEDs. These two kinds of devices were measured for electrical and optical response. It was evidenced that the addition of PEDOT:PSS layer facilitated the separation of excitons into electrons and holes at the PBO/PEDOT:PSS interface. Insertion of a LiF layer between PBO layer and Al cathode reduced their energy band gap and facilitated charge transport leading to an enhanced efficiency for PV cells and PLEDs. Thickness variations were found on spun PBO layer. According to emission intensity, we knew that the PBO layer quality was significant for electroluminescence. Introduction of a PEDOT:PSS layer improved the interface between ITO and PBO. The thickness of PEDOT:PSS layer depended on the ITO surface roughness. With a PEDOT:PSS layer, the opto-electronic efficiency of PV cell and PLED was improved.
7

White Light Emitting Diodes of Non-fully Conjugated Coil-like Polymer Doped with Derivatized Multi-wall Carbon Nanotubes

Chang, Yi-jyun 28 July 2006 (has links)
Luminescent emission of non-fully conjugated homopolymers was successfully demonstrated as light emitting diodes (LEDs) in this research. Coil-like heterocyclic aromatic poly[2,2-(2,5-dialkyloxyphenylene)-4-4¡¦-hexafluoroisopropanebibenzoxazo- les] (6F-PBO-CnOTpA, with n = 10, 15, and 20) was synthesized, and polymer composites of 6F-PBO-CnOTpA was in-situ synthesized with acidified multi-wall carbon nanotube (MWNT- COOH). The non-fully conjugated coil-like heterocyclic aromatic homopolymer was synthesized by reacting 2,2,bis-(3-amino-4-hydroxy[henyl]-hexafluoropropane with 2,5-dialkyloxyterephthalic acid (CnOTpA) for 6F-PBO-CnOTpA, with n = 10, 15, and 20. In addition, MWNT was acidified for connecting the carboxylic group (-COOH) to reduce its aspect ratio and entropy induced aggregation. MWNT-COOH was analyzed using elemental analysis (EA) and viscometry to validate the effects of acidification period. The EA result seemed to suggest that the oxygen content increased, and the carbon and the hydrogen contents decreased with acidification period. The inherent viscosity (£binh) decreased according to acidification period suggesting that the aspect ratio was indeed decreased. A hole transport layer of PEDOT¡GPSS was applied for multi-layer LEDs,. The LEDs all showed a threshold voltage about 4 V also for the composites of 6F-PBO-CnOTpA in-situ polymerized with MWNT-COOH. The 6F-PBO-CnOTpA LEDs with and without MWNT-COOH showed an electroluminescence emission range of 400 to 750 nm.
8

Light Emitting Diodes and Photovoltaic Cells of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymers Doped with Multi-wall Carbon Nanotube

Huang, Jen-Wei 01 November 2006 (has links)
Poly-p-phenylenebenzobisoxazole (PBO) and carbon nanotube (CNT) contain fully conjugated rod like backbone entailing excellent mechanical properties, thermo -oxidative stability and solvent resistance. Rigid-rod PBO is commonly processed by dissolving in methanesulfonic acid or Lewis acid. A CNT of multi-wall carbon nanotube (MWNT) was dissolved in a Lewis acid solution of PBO for dispersion, and then spun for thin film. MWNT concentration in the films was from zero up to 5 wt. %. Compared to that of pure PBO film, all PBO/MWNT composite films retained same but enhanced UV-Vis absorption peaks, according to MWNT concentration, showing that PBO and MWNT did not have overlapping electron orbitals affecting their energy gaps. The composite films were excited at 325 nm using a He-Cd laser for photoluminescence (PL) emission. All PL spectra had maximum intensity at 540 nm indicative of yellow-green light emission. The composite films were fabricated as light emitting diodes using indium-tin-oxide/glass as substrate and anode, as well as vacuum evaporated Al as cathode for respectively hole and electron injectors. In these light emitting devices, MWNT doped PBO would decrease threshold voltage for about 2 V. Up to 0.1 wt. % of MWNT, the device emission current was increased two orders of magnitude than those of the devices without MWNT. Further increase of MWNT caused a successive decrease in electroluminescence emission intensity attributed to a quench effect from aggregations of MWNTs. UV epoxy resin was applied to package the mono-layer and bilayer PBO light emitting devices. The UV epoxy resin had some gas release during encapsulation. The devices were packaged with vacuum and without vacuum encapsulation. It was demonstrated that the device encapsulation reduced its demise from water and oxygen. The vacuum encapsulation could remove gaseous volatile of the device to inhibit oxygen and moisture to prolong device lifetime. The main degradation of light emitting device was the oxidization of cathode. The interactions between nitrogen of PBO and H2O caused the formation of hydrogen bonding at room temperature. Oxygen and moisture diffused into PBO polymer and were suspected to form mid-gap state for the polymer. The mid energy band disappeared upon heat treatment before encapsulation. A device under a higher bias voltage was found to have a shorter lifetime, but a larger EL emission intensity. The EL emission intensity was not a constant under a constant current bias. The vacuum encapsulated device had two or twenty times lifetime than, respectively, the device encapsulation without vacuum evacuation or in ambient conditions. The sandwich structure of ITO/PBO/Al had no observable photovoltaic effect due to insufficient exciton separation into electrons and holes. Poly(2,3-dihydro thieno-1,4-dioxin):polystyrenesulfonate (PEDOT:PSS), a hole transferring medium, was spun into a thin-film between PBO and indium-tin-oxide to facilitate photovoltaic (PV) effect by forming a donor-acceptor interlayer to separate and to transport photoinduced charges. Optimum PBO thickness for the PV heterojunctions was about 71 nm at which the hole transferring PEDOT:PSS generated the maximum short circuit current (Isc) at a thickness of 115 nm. By using a layer of lithium fluoride (LiF) as an electron transferring layer adhering to Al cathode, the most open circuit voltage (Voc) and the maximum short circuit current (Isc) were achieved with a LiF thickness of 1-2 nm due to possible electric dipole effect leading to an increase of Voc from 0.7 V to 0.92 V and of Isc from about 0.1
9

Electrode Modifications of Molecular Light Emitting Diodes

Cheng, Han-Yuan 09 June 2003 (has links)
Molecular light emitting diode, including organic light emitting diode (OLED) and polymer light emitting diode (PLED), is commonly consist of one or several molecular layer(s) sandwiched between an anode and a cathode. When electrons and holes are injected respectively from cathode and anode into the molecular layer by a bias voltage, these two types of carriers migrate towards each other and a fraction of them recombine to form light emission. The focus of this study is electrode modifications of molecular light emitting diode. The electrode modifications include using a low work function cathode material, a high work function anode material or inserting a very thin electrode modifier between molecular layer and electrode for enhancing the electron or the hole injection efficiency leading to higher electroluminescence emission and/or lower threshold voltage. Low work function metal, Mg, could effectively reduce the electron injection barrier between molecular layer and cathode leading to better emission brightness and threshold voltage. A monolayer rigid-rod poly-p-phenylenebenzobisthiazole (PBT) or poly-p-phenylenebenzobis- oxazole (PBO) PLED with Mg cathode demonstrated a low threshold voltage of 3 V. Besides, a very thin layer of LiF (or Al2O3) inserted between molecular layer and Al cathode was applied to enhance the electron injection efficiency leading to a stronger electroluminescence intensity and a low threshold voltage of 2.8 V. On anode modification, a thin PBO layer was inserted between molecular layer and the indium-tin-oxide (ITO) substrate for improving the electroluminescence emission brightness and the threshold voltage. The PBO modified anode could effectively enhance the electro- luminescence intensity and lower the threshold voltage to 1 V~ 3 V on several mono- or multi-layer molecular light emitting diodes. Besides, a novel ITO substrate cleaning method via acid treatment was applied for increasing the work function of ITO to effectively enhance the hole injection efficiency.
10

Effects of Layer Thickness on Electroluminescence of Fully Conjugated Rigid-rod Polymer Light Emitting Diodes

Tseng, Hua-wei 12 July 2008 (has links)
A heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) was applied as the opto-electronic layer¡Fand a conducting material of poly(3,4-ethylenedioxythio-phene):poly(4-styrenesulfonic acid) (PEDOT: PSS) was used as the hole transport layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode¡Arespectively, fabricated into a bi-layer structure of ITO/PEDOT:PSS/PBO/Al for electrical and luminescence responses. This research demonstrated an increase of current density and a decrease of threshold voltage with a decrease of PBO layer thickness from 90 nm to 27 nm to facilitate electron tunneling and electron-hole recombination. With a lower spin coating speed, polymer chain would aggregate and inter-penetrate resulted in red-shift of electroluminescence (EL) emission spectrum. Furthermore, micro-cavity effect might influence EL spectrum by varying layer thickness. Modulation of PBO layer thickness led to tunable EL emission color. It was also demonstrated that an increase of current density and a slightly decrease of threshold voltage with a PEDOT:PSS film thickness changing from 96 nm to 17 nm at a constant PBO layer thickness of 90 nm. Micro-cavity effect thus influenced EL emission for a tunable emission color. Photolithography was applied to obtain ITO substrate of grating depth of periodic variation and then coated with a PEDOT:PSS leading to a grated PEDOT:PSS layer of periodic thickness. This led to ITO/PEDOT:PSS/PBO/Al device showing broadened EL emission spectra.

Page generated in 0.0749 seconds