• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calcium vapour deposition on semiconducting polymers studied by adsorption calorimetry and visible light absorption

Hon, Sherman Siu-Man 11 1900 (has links)
A novel UHV microcalorimeter has been used to study the interaction between calcium and three polymers: MEH-PPV, MEH-PPP and P3HT. All three polymers behave differently in their reaction kinetics with calcium. On MEH-PPV we measure 45 μJ/cm² of heat generated in excess of the heat of bulk metal growth, 120 μJ/cm² for MEH-PPP, and 100 μJ/cm² for P3HT. Comparison of the MEH-PPV and MEHPPP data indicate that the initial reaction of calcium with MEH-PPV occurs at the vinylene group. We propose, based on hypothetical models, that calcium reacts with the vinylene groups of MEH-PPV with a reaction heat of 360 kJ/mol and at a projected surface density of 1.7 sites/nm², while it reacts with the phenylene groups of MEH-PPP in a two-step process with reaction heats of 200 and 360 kJ/mol respectively, at a projected surface density of 3.5 sites/nm². Optical absorption experiments, using either a 1.85 eV diode laser or a xenon lamp coupled to a scanning monochromator, have also been performed using the same calorimeter sensor. In the case of MEH-PPV, using the laser we find an optical absorption cross-section of 3E-¹⁷ cm² per incident calcium atom at low coverages. The change in absorptance at higher coverages correlates perfectly with the population of reacted Ca atoms determined calorimetrically. The size of the absorbance cross-section, and its position just within the band gap of the polymer, are consistent with the reaction being one of polaron formation. Calcium does not appear to dope P3HT, while the photon energy range of 1.5 to 3.75 eV used in these experiments is likely too small for probing polaronic energy states in MEH-PPP.
2

Calcium vapour deposition on semiconducting polymers studied by adsorption calorimetry and visible light absorption

Hon, Sherman Siu-Man 11 1900 (has links)
A novel UHV microcalorimeter has been used to study the interaction between calcium and three polymers: MEH-PPV, MEH-PPP and P3HT. All three polymers behave differently in their reaction kinetics with calcium. On MEH-PPV we measure 45 μJ/cm² of heat generated in excess of the heat of bulk metal growth, 120 μJ/cm² for MEH-PPP, and 100 μJ/cm² for P3HT. Comparison of the MEH-PPV and MEHPPP data indicate that the initial reaction of calcium with MEH-PPV occurs at the vinylene group. We propose, based on hypothetical models, that calcium reacts with the vinylene groups of MEH-PPV with a reaction heat of 360 kJ/mol and at a projected surface density of 1.7 sites/nm², while it reacts with the phenylene groups of MEH-PPP in a two-step process with reaction heats of 200 and 360 kJ/mol respectively, at a projected surface density of 3.5 sites/nm². Optical absorption experiments, using either a 1.85 eV diode laser or a xenon lamp coupled to a scanning monochromator, have also been performed using the same calorimeter sensor. In the case of MEH-PPV, using the laser we find an optical absorption cross-section of 3E-¹⁷ cm² per incident calcium atom at low coverages. The change in absorptance at higher coverages correlates perfectly with the population of reacted Ca atoms determined calorimetrically. The size of the absorbance cross-section, and its position just within the band gap of the polymer, are consistent with the reaction being one of polaron formation. Calcium does not appear to dope P3HT, while the photon energy range of 1.5 to 3.75 eV used in these experiments is likely too small for probing polaronic energy states in MEH-PPP.
3

Calcium vapour deposition on semiconducting polymers studied by adsorption calorimetry and visible light absorption

Hon, Sherman Siu-Man 11 1900 (has links)
A novel UHV microcalorimeter has been used to study the interaction between calcium and three polymers: MEH-PPV, MEH-PPP and P3HT. All three polymers behave differently in their reaction kinetics with calcium. On MEH-PPV we measure 45 μJ/cm² of heat generated in excess of the heat of bulk metal growth, 120 μJ/cm² for MEH-PPP, and 100 μJ/cm² for P3HT. Comparison of the MEH-PPV and MEHPPP data indicate that the initial reaction of calcium with MEH-PPV occurs at the vinylene group. We propose, based on hypothetical models, that calcium reacts with the vinylene groups of MEH-PPV with a reaction heat of 360 kJ/mol and at a projected surface density of 1.7 sites/nm², while it reacts with the phenylene groups of MEH-PPP in a two-step process with reaction heats of 200 and 360 kJ/mol respectively, at a projected surface density of 3.5 sites/nm². Optical absorption experiments, using either a 1.85 eV diode laser or a xenon lamp coupled to a scanning monochromator, have also been performed using the same calorimeter sensor. In the case of MEH-PPV, using the laser we find an optical absorption cross-section of 3E-¹⁷ cm² per incident calcium atom at low coverages. The change in absorptance at higher coverages correlates perfectly with the population of reacted Ca atoms determined calorimetrically. The size of the absorbance cross-section, and its position just within the band gap of the polymer, are consistent with the reaction being one of polaron formation. Calcium does not appear to dope P3HT, while the photon energy range of 1.5 to 3.75 eV used in these experiments is likely too small for probing polaronic energy states in MEH-PPP. / Science, Faculty of / Chemistry, Department of / Graduate
4

Étude des composantes mécanique et métallurgique dans la liaison revêtement-substrat obtenue par projection dynamique par gaz froid pour les systèmes «Aluminium/Polyamide6,6» et «Titane/TA6V» / Study of the mechanical and metallurgical contributions to coating-substrate bonding in cold spray for «Aluminium/Polyamide 66» and «Titanium/Ti-6Al-4V»

Giraud, Damien 17 June 2014 (has links)
La projection thermique cold spray consiste en l'envol de poudres à haute vitesse sur une cible : le substrat. Leur adhérence et leur accumulation mène à des revêtements plus ou moins denses, utilisés dans le domaine automobile, biomédical, etc. La première étape de construction du dépôt passe par un contact entre la poudre et le substrat. Il est admis que la liaison créée est mécanique et, si la nature des matériaux le permet, métallurgique. Cette étude permet de statuer sur ces deux composantes. Pour cela, deux systèmes privilégiant l'une ou l'autre, sont choisis. L'ancrage mécanique est vu au travers de la métallisation de polymère avec l'emploi d'aluminium projeté sur polyamide 6,6. La liaison métallurgique est abordée avec l'emploi de titane sur un substrat plus rigide en TA6V. Avant d'étudier les mécanismes de liaison, une étape d'élaboration des dépôts est réalisée balayant de nombreux paramètres « procédé » et différentes propriétés des matériaux (température, granulométrie). Des outils sont déployés pour connaître les conditions d'impact : la vitesse de particule par DPV2000, la température du substrat par thermographie infra-rouge et la température des particules par voie numérique. L'ancrage mécanique dans le polymère est décrit grâce à l'étude de l'impact de particules élémentaires ainsi que de la rugosité d'interface 2D (coupes micrographiques) et 3D (laminographie X). Le gradient de porosité est également quantifié. La liaison métallurgique est étudiée par MET. Au préalable, la simulation numérique par éléments finis est employée pour retracer la phénoménologie de l'impact ainsi que quantifier les déformations et les températures locales atteintes à l'interface. La morphologie simulée des particules à l'impact est comparée à celles observées dans des conditions réelles de projection. Enfin, l'adhérence des différents dépôts est évaluée par essai « plot collé » et les faciès de rupture observés. L'influence de la morphologie de surface est étudiée avec des prétraitements de sablage et de structuration laser. / Cold Spray consists in the high-speed spray of powder particles onto a target; namely the substrate. Their adhesion and accumulation leads to a more or less dense coating to be used in the automotive, the biomedical… areas. The first stage of coating results from a powder to substrate contact. Bonding is due to mechanical anchoring and, depending on the involved materials, to metallurgical interaction. This study helps to rule on these two components. For this, two systems, which promote either mechanical or metallurgical mechanism separately, are selected. Mechanical anchoring is studied through polymer metallization using of aluminum for spraying onto polyamide 6,6. Metallurgical bonding is studied using titanium onto Ti-6Al-4V. Before studying the bonding mechanisms, the spraying process is investigated using many process parameters and materials properties (temperature, particle size…). Advanced tools are employed to determine impact conditions; i.e. particle velocity by DPV2000, substrate temperature by infrared thermography and particle temperature by numerical calculation. Mechanical anchoring onto the polymer is described through the analysis of elementary particle impacts and through 2D (micrograph sections) and 3D (laminography) study of interface roughness. The porosity gradient is also quantified. Metallurgical bonding is studied by TEM. Before that, a finite element simulation is used to go into the phenomenology of the impact and to quantify the local deformation and temperature at the interface. The simulated particle morphology is compared to those observed in real spraying conditions. Lastly, deposit adhesion is assessed by pull-off testing and the fractured surface is observed. The influence of the substrate surface morphology is exhibited using sand-blasting and laser structuring pretreatments.

Page generated in 0.1165 seconds