• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 649
  • 319
  • 43
  • 23
  • 10
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1175
  • 1175
  • 1171
  • 619
  • 617
  • 615
  • 608
  • 181
  • 158
  • 154
  • 141
  • 137
  • 134
  • 104
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Microfluidic system with open loop control for rapid infrared reverse transcription quantitative PCR (RT-qPCR)

Saunders, Daniel Curtis 05 July 2012 (has links)
Microfluidic techniques have allowed for fast, sensitive, and low cost applications of the Polymerase Chain Reaction (PCR) through the use of small reaction volumes, rapid amplification speeds, and the on-chip integration of upstream and downstream sample handling processes including purification and electrophoretic separation functionality. While such systems are capable of measuring the expression levels of thousands of genes simultaneously, or in hundreds of cells, or with sample-in and answer-out capability, none of these systems are easily scalable in the time domain. Because of this, the field of gene expression measurement has yet to fully utilize the advantages of microfluidic PCR in developing systems to measure changes in gene expression in increments of hours rather than days. In this project, we developed a microfluidic RT-qPCR system that utilizes infrared heating and open-loop control to reliably reverse transcribe, amplify, and detect samples in a single 1 μl polymer chip. Optimized power profiles were created that allow for fast heating and cooling rates while minimizing undershoot and overshoot from the desired hold temperatures. By utilizing repeatable microfluidic chip manufacturing techniques, and by controlling the environment around the chip, the same open loop program can repeatedly amplify multiple samples without any need for temperature feedback or recalibration between runs. Furthermore, the system was designed to operate on top of a fluorescence microscope to enable real-time fluorescence detection and quantification of starting copy number. By eliminating complicated setup procedures and calibration runs, this system increases the practicality of measuring gene expression at a high temporal frequency.
282

Simultaneous amplification of multiple dna targets with optimized annealing temperatures

Pak, Nikita 16 July 2012 (has links)
The polymerase chain reaction (PCR) is an extremely powerful tool for viral detection and screening because it can detect specific infectious agents with great sensitivity and specificity. It works by exponentially amplifying a target viral DNA sequence to high enough concentrations through the use of specific reagents and thermal cycling. It has surpassed culture based methods as the gold standard for viral detection because of the increased speed and sensitivity. Microfluidic approaches to PCR have focused on decreasing the time to thermally cycle, the volumes used for reactions, and they have also added upstream and downstream processes that are of benefit for on-chip viral detection. While these improvements have made great strides over commercially available products in terms of speed, cost, and integration, a major limitation that has yet to be explored is the throughput associated with running PCR. Since each PCR reaction relies on primers with a unique annealing temperature to detect specific viral DNA, only a single virus can be screened for at a time. The device presented here uses two infrared laser diodes that are driven identically by the same laser driver to independently thermally cycle two chambers on the same microfluidic chip. Different temperatures are achieved in the two chambers by modulating the radiation reaching one of those chambers with an optical shutter. Closed loop temperature feedback in both chambers is done with a Labview program and thermocouples embedded in the polymer chip. This allows for accurate temperature measurement without inhibiting the reaction. To demonstrate the capabilities of this device, two different reactions were simultaneously amplified successfully on the same device that have annealing temperatures that differ by 15°C.
283

Preimplantation diagnosis / Ke-hui Cui

Cui, Ke-hui January 1993 (has links)
Bibliography: leaves 126-147 / xiv, 147 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Summary: Aims to develop reliable procedures for determining the genetic status of embryos derived by IVF procedures prior to implantation. Prenatal diagnosis allows pregnancy to be established using only acceptable embryos / Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1994
284

Minimal residual disease in chronic myeloid leukaemia after imatinib treatment.

Ross, David Morrall January 2010 (has links)
Around 50% of chronic myeloid leukaemia (CML) patients who remain on imatinib treatment for more than 5 years will achieve a complete molecular response (CMR), defined by undetectable BCR-ABL mRNA in a sensitive reverse transcriptase real-time quantitative PCR (RQ-PCR) assay. Given the increasing importance of CMR on imatinib therapy the primary aim of this study was to improve the accuracy and sensitivity of MRD detection to allow a more accurate estimation of relapse risk when therapy is withdrawn. Firstly, we investigated ways of improving the sensitivity of RT-PCR methods for the detection of BCR-ABL mRNA. Secondly, we investigated the use of the patient-specific BCR-ABL gene for the detection of MRD. Thirdly, we conducted a multi-centre clinical trial of imatinib withdrawal in selected CML patients in a stable CMR. This clinical trial provided patient samples that could be used to test our optimized MRD assays, and provided clinical data on the risk and patterns of relapse after withdrawal of imatinib therapy. The trial is ongoing, but an interim analysis of the study data was performed. In 22 patients the estimated probability of molecular relapse after imatinib withdrawal was 54%, and 60% of relapses occurred within the first 4 months. The average detection limit of BCR-ABL mRNA by RQ-PCR is estimated at around 4.5 log below the level of BCR-ABL prior to commencing treatment. The number of leukaemic cells at diagnosis is around 10¹ ², so the number of residual leukaemic cells in CMR might vary from zero to over a million. We hypothesized that the amount of residual leukaemia in CMR is variable between patients, and that this heterogeneity is a determinant of the risk of relapse when treatment is withdrawn. We developed more sensitive methods for the detection of BCR-ABL and tested these methods in samples from our study patients. We showed that random pentadecamer (15-mer) primers improved the efficiency of reverse transcriptase PCR (RT-PCR), and resulted in a lower detection limit of BCR-ABL mRNA. We also developed a novel nested RT-PCR method using real-time PCR for the second round of the reaction, and this resulted in a lower detection limit of BCR-ABL in patient samples. The utility of this nested RT-PCR method was limited by a false positive rate of 2-3% in the HeLa cell line that we used as our negative control. Consequently, we examined the detection of the patient-specific genomic BCR-ABL sequence as an alternative to RT-PCR. Breakpoints in BCR and ABL1 in CML patients are widely dispersed over 3 kb and 150 kb, respectively. Therefore, the BCR-ABL genomic sequence is essentially unique to each patient. We sequenced the genomic breakpoints of 43 CML patients. We showed that the distribution of breakpoints in BCR and ABL1 was non-random, but we were unable to identify any genomic feature that determined the specific location of individual breakpoints. We developed a novel BCR-ABL DNA Q-PCR method for 12 of the study patients, and in 11 of the patients BCR-ABL DNA was detected when the patient was in a CMR, confirming that this method was more sensitive than RQ-PCR. Contrary to our hypothesis, the detection of BCR-ABL DNA was not predictive of relapse. In most patients who relapsed there was a significant increase in BCR-ABL DNA prior to mRNA relapse. Two patients had stable levels of BCR-ABL DNA measurable on multiple occasions, but remained in remission after 6 months and 15 months, respectively. We have shown that a stable CMR after the withdrawal of imatinib therapy does not necessarily indicate the eradication of leukaemia. / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2010
285

Aspects of Helicobacter pylori transmission /

Kivi, Mårten, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
286

Vibrio cholerae O139 : identification, characterization and vaccine strategies /

Falklind Jerkérus, Susanna, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2003. / Härtill 4 uppsatser.
287

Technology development for genome and polymorphism analysis /

Jobs, Magnus, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
288

Reverse transcriptase assays for analysis of resistance to anti-HIV drugs and their mechanism of action /

Shao, Xingwu, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
289

Genome studies of cereals /

Song, Weining, January 1992 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Plant Science, 1994. / Includes bibliographical references (leaves 93-114).
290

Generation of persistence data for DSL-fungi in intact soil microcosms using PCR-based markers /

Chaudhry, Omar, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2004. / Includes bibliographical references (p. 56-69). Also available in electronic format on the Internet.

Page generated in 0.0653 seconds