• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of Polymeric Foam as an On-Board Vehicular HPR Hydrogen Storage Media

Banyay, Gregory A. 25 September 2006 (has links)
No description available.
2

Dispositifs microfluidiques dans les mousses polymères : fabrication, modélisation et applications biologiques. / Microfluidic devices in polymeric foam : fabrication, modeling and biological applications

Gropplero di Troppenburg, Giacomo 27 March 2017 (has links)
Les dispositifs de diagnostics à bas coût au point d'intervention reposent notamment sur la microfluidique et un support adapté. La mousse polymère dispose de propriétés mécaniques et structurales particulières (porosité, élasticitédots) qui la distinguent des autres matériaux utilisés en microfluidique (PDMS, papier, matières plastiques, verre, siliciumdots). Cette thèse porte sur l'investigation systématique des différentes potentialités offertes par la mousse polymère en tant que nouveau support pour la microfluidique. Un procédé de mise en forme est tout d'abord proposé permettant la réalisation d'un microsystème fluidique. Ce nouveau procédé repose sur l'utilisation conjointe d'une mousse polymère et d'un élastomère afin de réaliser des systèmes fluidiques très élastiques, conservant les propriétés structurales initiales de la mousse. Basé sur une technique d'emboutissage contrôlée et reproductible, le procédé est compatible avec une production industrielle. Un modèle numérique associé permet aussi son optimisation. Les dispositifs microfluidiques en mousse ainsi réalisés possèdent, en plus de la capillarité, un atout déterminant : la possibilité d'une compression manuelle ou d'un actionnement péristaltique externes pour un contrôle des écoulements microfluidiques sans contamination. L'actionnement péristaltique est compatible avec un fonctionnement en pompe et en vanne. Une modélisation par approche nodale permet de reproduire dynamiquement le comportement des écoulements dans des canaux fluidiques en mousse. En vue d'une intégration dans des systèmes portables à bas coût, les étapes fondamentales d'un test de diagnostic (récupération et préparation d'un échantillon, détection) sont validées. On montre que la filtration est possible pour des objets de quelques dizaines de micromètres. Les dispositifs en mousse peuvent aussi être fonctionnalisés chimiquement pour optimiser la capture de cibles biologiques. La détection d'éléments biologiques est également possible en fluorescence ou par colorimétrie à partir d'une amplification isotherme de l'ADN. Enfin, un prototype de typage sanguin donne accès au groupe sanguin d'un échantillon de sang total en quelques minutes. Ce dernier test est mené sur un dispositif intégré qui met en valeur l'essentiel des avantages d'un dispositif en mousse : robustesse, simplicité d'utilisation, embarquement de réactifs, association de différents matériaux, déplacement d'un échantillon biologique par compression externe contrôlée par un opérateur, lecture directe d'un résultat de test en quelques minutes. / Microfluidics and an appropriate substrate are essentials for the design of low-cost point-of-care diagnostic devices. The particular mechanical and structural properties (porosity, elasticitydots) of polymeric foam are unique among the other widespread materials in microfluidics (PDMS, paper, plastic materials, glass, silicondots). A systematic screening of the different capabilities provided by polymeric foam as a new substrate for microfluidics is offered in this thesis. First off, a shaping process is proposed for the production of fluidic microsystems. This new process relies on the combined usage of a polymeric foam and an elastomer to produce highly elastic fluidic systems that keep the initial structural properties of the foam. Based on a controlled and repeatable embossing technic, the process is compatible with industrial production. A coupled numerical model also allows its optimization. The resulting foam microfluidic devices have, besides capillarity, a decisive asset : the option of a manual compression or an external peristaltic actuation for a contamination-free control of the microfluidic flows. The peristaltic actuation can function as a pump and as a valve. A lumped elements model enables a dynamic reproduction of the fluidic behavior inside the foam channels. To ensure proper integration in low-cost portable devices, the fundamental stages of a diagnostic test (retrieval and preparation of a sample, detection) are validated. We show that filtration of objects of only a few tens of micrometers in size is possible. The foam devices can also be chemically functionalized to optimise the capture of specific biological targets. The fluorescent or colorimetric detection of biological elements is equally possible by means of isothermal DNA amplification. Finally, a blood typing prototype gives access to the blood group of a whole blood sample in a few minutes. This last test is carried on an integrated device which highlights the main benefits of a foam device : robustness, user-friendly, embedded reagents, multiple materials combination, transport of a biological sample by external compression controlled by an operator, direct readout of a result in a few minutes.
3

Modelos de material para espumas poliméricas aplicadas a estruturas aeronáuticas em material compósito sanduíche / Material models for polymeric foams applied to aircraft structures in sandwich composite materials

Caliri Junior, Mauricio Francisco 08 July 2010 (has links)
Estruturas aeronáuticas são em sua grande parte fabricadas em material compósito para que sejam atendidas as especificações de projeto. Entre essas estruturas destaca-se a estrutura sanduíche. A utilização desse tipo de estrutura requer estudos extensos em novos materiais, bem como na aplicação dos mesmos. Uma atenção especial para o núcleo dessas estruturas é necessária, pois este material é na verdade uma estrutura celular, como as espumas poliméricas. Esta dissertação busca concatenar a literatura com a prática ao estudar a calibração de modelos de material para descrever o comportamento mecânico de espumas poliméricas, bem como avaliar suas potencialidades e limitações. Estas espumas são estruturas celulares cujos mecanismos de falha consistem em respostas micro e macroscópicas. A identificação e quantificação desses comportamentos podem ser feitas através da investigação de modelos de material micro-mêcanicos ou fenomenológicos (macro-mecânicos) associados a ensaios e análises experimentais tanto do material celular quanto da estrutura na qual este material é utilizado. Cada abordagem, micro ou macro-mecânica, possui vantagens e desvantagens que no presente trabalho são discutidas para o material estudado (espuma polimérica rígida de PVC, poli-cloreto de vinila, com estrutura de células fechada e densidade de 60kg/m³). Uma série de ensaios experimentais com bases em normas é realizada e os dados coletados são comparados com dados obtidos simultaneamente através de uma técnica de correlação de imagens. Todas as informações experimentais são confrontadas e associadas aos mecanismos de falha da espuma polimérica. Finalmente, os dados experimentais são utilizados nas identificações de parâmetros de modelos de material disponíveis em um programa comercial de elementos finitos - ABAQUS. Com os modelos de material calibrados, o presente trabalho investiga a representatividade e as limitações dos mesmos quando aplicados a estruturas aeronáuticas submetidas a cargas localizadas, monotônicas ou não. Observou-se que há uma forte dependência da resposta macroscópica da espuma com sua estrutura celular quando submetida a cargas localizadas e/ou não-monotônicas. Ademais, o uso de modelos de material simplificados, e/ou com hipóteses de implementação, gera resultados duvidosos quando estes modelos são aplicados a materiais celulares com respostas complexas (mecanismos micro-mecânicos, anisotropia, viscosidade, etc.). Todavia, o presente trabalho mostra que uma calibração estratégica relevando as hipóteses de implementação e as limitações do modelo de material, fornece bons resultados macroscópicos que são fortemente influenciados pelos mecanismos de falha micro-mecânicos. / Aircraft structures are mostly made of composite material in order to achieve the specifications of a project. Among these structures one highlights the sandwich structure. The usage of this structure requires extensive studies on new materials as well as on the application of these very materials. A special attention for the cores material of these structures is needed because it is in fact a cellular structure, as the polymeric foams. This dissertation seeks to concatenate the literature and practice, studying the calibration of material models to describe the mechanical behavior of polymeric foams, as well as to analyse their potentials and limitations. These foams are cellular structures whose failure mechanisms comprise micro and macro responses. The identification and quantification of these behaviors can be done through micro-mechanical or phenomenological (macro-mechanical) material models along with experimental tests and analyses of both the cellular material and the structure in which this material is used. Each approach, micro or macro, has advantages and disadvantages that in the present work are discussed for the studied material (PVC, poly-vinyl-chloride, rigid closed-cell polymeric foam with a density of 60kg/m³). A series of experimental tests based on standard procedures are carried out and the data collected are compared with data obtained simultaneously through an image correlation technique. All the experimental information are confronted and associated to the failure mechanisms of the polymeric foam. Finally, the experimental data are used for the identification of material models parameters, currently available in the commercial finite elements software - ABAQUS. With the material models calibrated, the present work investigates the representativeness and the limitations of these very models when applied to aircraft structures submitted to monotonic or not localized loads. One has observed that there is a strong dependence of the foams macroscopic response with its cellular structure when it is submitted to localized and/or non-monotonic loads. Moreover, the usage of simplified material models, and/or with some implementation hypotheses, renders doubtful results when these models are applied to cellular materials with complex responses (micro-mechanical mechanisms, anisotropy, viscosity, etc.). Nevertheless, the present work shows that a strategic calibration taking into account the implementation hypotheses and the limitations of the material model, yields good macroscopic results that are strongly influenced by the micro-mechanical failure mechanisms.
4

Modelos de material para espumas poliméricas aplicadas a estruturas aeronáuticas em material compósito sanduíche / Material models for polymeric foams applied to aircraft structures in sandwich composite materials

Mauricio Francisco Caliri Junior 08 July 2010 (has links)
Estruturas aeronáuticas são em sua grande parte fabricadas em material compósito para que sejam atendidas as especificações de projeto. Entre essas estruturas destaca-se a estrutura sanduíche. A utilização desse tipo de estrutura requer estudos extensos em novos materiais, bem como na aplicação dos mesmos. Uma atenção especial para o núcleo dessas estruturas é necessária, pois este material é na verdade uma estrutura celular, como as espumas poliméricas. Esta dissertação busca concatenar a literatura com a prática ao estudar a calibração de modelos de material para descrever o comportamento mecânico de espumas poliméricas, bem como avaliar suas potencialidades e limitações. Estas espumas são estruturas celulares cujos mecanismos de falha consistem em respostas micro e macroscópicas. A identificação e quantificação desses comportamentos podem ser feitas através da investigação de modelos de material micro-mêcanicos ou fenomenológicos (macro-mecânicos) associados a ensaios e análises experimentais tanto do material celular quanto da estrutura na qual este material é utilizado. Cada abordagem, micro ou macro-mecânica, possui vantagens e desvantagens que no presente trabalho são discutidas para o material estudado (espuma polimérica rígida de PVC, poli-cloreto de vinila, com estrutura de células fechada e densidade de 60kg/m³). Uma série de ensaios experimentais com bases em normas é realizada e os dados coletados são comparados com dados obtidos simultaneamente através de uma técnica de correlação de imagens. Todas as informações experimentais são confrontadas e associadas aos mecanismos de falha da espuma polimérica. Finalmente, os dados experimentais são utilizados nas identificações de parâmetros de modelos de material disponíveis em um programa comercial de elementos finitos - ABAQUS. Com os modelos de material calibrados, o presente trabalho investiga a representatividade e as limitações dos mesmos quando aplicados a estruturas aeronáuticas submetidas a cargas localizadas, monotônicas ou não. Observou-se que há uma forte dependência da resposta macroscópica da espuma com sua estrutura celular quando submetida a cargas localizadas e/ou não-monotônicas. Ademais, o uso de modelos de material simplificados, e/ou com hipóteses de implementação, gera resultados duvidosos quando estes modelos são aplicados a materiais celulares com respostas complexas (mecanismos micro-mecânicos, anisotropia, viscosidade, etc.). Todavia, o presente trabalho mostra que uma calibração estratégica relevando as hipóteses de implementação e as limitações do modelo de material, fornece bons resultados macroscópicos que são fortemente influenciados pelos mecanismos de falha micro-mecânicos. / Aircraft structures are mostly made of composite material in order to achieve the specifications of a project. Among these structures one highlights the sandwich structure. The usage of this structure requires extensive studies on new materials as well as on the application of these very materials. A special attention for the cores material of these structures is needed because it is in fact a cellular structure, as the polymeric foams. This dissertation seeks to concatenate the literature and practice, studying the calibration of material models to describe the mechanical behavior of polymeric foams, as well as to analyse their potentials and limitations. These foams are cellular structures whose failure mechanisms comprise micro and macro responses. The identification and quantification of these behaviors can be done through micro-mechanical or phenomenological (macro-mechanical) material models along with experimental tests and analyses of both the cellular material and the structure in which this material is used. Each approach, micro or macro, has advantages and disadvantages that in the present work are discussed for the studied material (PVC, poly-vinyl-chloride, rigid closed-cell polymeric foam with a density of 60kg/m³). A series of experimental tests based on standard procedures are carried out and the data collected are compared with data obtained simultaneously through an image correlation technique. All the experimental information are confronted and associated to the failure mechanisms of the polymeric foam. Finally, the experimental data are used for the identification of material models parameters, currently available in the commercial finite elements software - ABAQUS. With the material models calibrated, the present work investigates the representativeness and the limitations of these very models when applied to aircraft structures submitted to monotonic or not localized loads. One has observed that there is a strong dependence of the foams macroscopic response with its cellular structure when it is submitted to localized and/or non-monotonic loads. Moreover, the usage of simplified material models, and/or with some implementation hypotheses, renders doubtful results when these models are applied to cellular materials with complex responses (micro-mechanical mechanisms, anisotropy, viscosity, etc.). Nevertheless, the present work shows that a strategic calibration taking into account the implementation hypotheses and the limitations of the material model, yields good macroscopic results that are strongly influenced by the micro-mechanical failure mechanisms.

Page generated in 0.0711 seconds