• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechano-chemical model study of the mixing process of water/flour mixtures in the context of the industrial wheat gluten-starch separation process / Etude modèle mécano-chimique de l’opération de malaxage des mélanges farine/eau dans le contexte du procédé industriel d’extraction du gluten de blé

Van der Mijnsbrugge, Adriaan 13 November 2015 (has links)
Le processus de séparation gluten-amidon est un des éléments clés du procédé de fractionnement de la farine de blé, pour la production d'amidon, de produits dérivés de l'amidon et de gluten de blé. Le procédé industriel comprend une étape de malaxage du mélange farine/eau, une étape de dilution de la pâte obtenue et enfin des opérations de séparation gluten-amidon par tamisage ou centrifugation. Le procédé industriel est très consommatoire en eau, et plusieurs flux d'eau sont recyclés des étapes situés en aval du procédé vers les étapes en amont comme la préparation et la dilution de la pâte. L'objective de cette étude était d'étudier l'impact de ces flux d'eau recyclés sur l'agglomération du gluten, et d'identifier les principaux paramètres du procédé qui influencent le rendement d'extraction du gluten. Basé sur l'échantillonnage de plusieurs flux d'eau de différentes usines, un composant clé de ces flux d'eau recyclée a été identifié. Les mécanismes de développement de la pâte ont été étudiés à l'échelle laboratoire en utilisant un mélangeur planétaire (P600). La présence du composant au niveau de l'étape de préparation de la pâte retarde sa cinétique de développement et augmente l'énergie mécanique à fournir pour le développement. A l'échelle moléculaire ce composant ralentit la dépolymérisation des polymères de gluténine insolubles dans le SDS (UPP) de la farine lors du malaxage de la pâte. L'agglomération du gluten est contrariée par la présence de ce composé que ce soit au moment de la préparation de la pâte ou de sa dilution. Au cours de l'étape de dilution ce composé modifie chimiquement les arabinoxylanes de la farine, ce qui a un effet négatif très direct sur la capacité d'agglomération des protéines du gluten. Un paramètre de conduite de l'opération de malaxage a été identifié qui rend compte de la capacité d'agglomération du gluten (rendement du procédé) et de la distribution en taille des macromolécules de gluténines présentent dans le gluten extrait. Ce dernier paramètre est également sous l'influence de la composition en gluténines, codées par le locus Glu-1D du génome du blé. / The gluten-starch separation process is a key part of an industrial wheat fractionation plant, producing starch, starch-derived products, and vital wheat gluten. The industrial process consists of an initial flour hydration and dough mixing phase, a dough dilution step, followed by a gluten-starch separation by sieving or centrifugation. As this process is highly water consuming, several water streams are recycled from downstream unit operation of the process back upstream, to stages such as dough preparation and dough dilution. The aim of the present study was to investigate the impact of these recycled water streams on gluten agglomeration, and provide a further insight on the main process parameters influencing the gluten extraction yield. Based on the sampling of several water streams of different industrial plants, a key compound of these recycled water streams was characterized. A lab scale planetary mixer was used to study the dough development mechanisms. The presence of this compound at the dough preparation stage delayed dough development, as it increased the energy demand of the dough. On a molecular scale this constituent induced a delay of the depolymerization of SDS-insoluble glutenin (UPP) during dough mixing. Gluten agglomeration is impeded by this compound, both when present at the stage of dough preparation and dough dilution. The presence of this compound at the dough dilution stage chemically modified the flour arabinoxylans, impairing gluten agglomeration. A mixing parameter directly influencing both the molecular distribution of extracted gluten, as well as their agglomerating capacity, was proposed. The evolution of the molecular distribution of the extracted gluten with this mixing parameter was shown to be influenced by the wheat its glutenin composition, coded by the Glu-1D locus of the wheat genome.
2

Effects of Variations in High Molecular Weight Glutenin Allele Composition and Resistant Starch on Wheat Flour Tortilla Quality

Jondiko, Tom Odhiambo 2010 December 1900 (has links)
Tortilla sales are projected to exceed 9.5 billion by 2014. However, currently no wheat cultivars have been identified that possess the intrinsic quality attributes needed for the production of optimum quality tortillas. Tortillas made with refined wheat flour low in dietary fiber (DF) are popular in the United States due to their sensory properties. This study explored the use of wheat lines (WL) possessing variations in high molecular weight glutenin allele sub-units (HMW-GS) for production of tortillas and also investigated the use of corn based resistant starches (RS), type II (RS2) and wheat based RS type IV (RS4) to increase DF in tortillas. Tortillas were made with 0-15 percent RS and 100 percent whole white wheat (WW). Flour protein profiles, dough, and tortilla properties were evaluated to determine the effects of the allelic variations and RS substitution on tortilla quality. Sensory properties of tortillas with RS were determined. Variations in HMW-GS composition significantly affected the protein quality and tortilla properties. Flour from WL possessing allelic combinations (2*, 17+18, 7, 2+12), (1, 17+18, 5+10), (2*, 17, 2+12) and (1, 2*, 17+18, 2+12) had 12.8-13.3 percent protein. These WL had extensible doughs and produced large diameter tortillas with superior (greater than or equal to 3.0) flexibility after 16 days compared to control. However, WL with (17+18 and 5+10) and (2*, 17+7, 5) produced extensible doughs, large, but less flexible, tortillas compared to control. WL with (2*,17+18,5+10) and (1,2*,7+9,5+10) produced smaller diameter tortillas, but with superior flexibility compared to control. RS2, WW, and cross-linked-pre-gelatinized RS4 (FiberRite) produced hard, less-extensible doughs and thinner tortillas compared to control, due to high water absorption. Cross-linked RS4 (Fibersym) dough and tortillas were comparable to control. 15 percent of RS2 and RS4 increase DF in control to 6 and 14 percent respectively, compare to control (2.8 percent DF). WW tortillas were less acceptable than control in appearance, flavor and texture, while tortillas with 15 percent Fibersym had higher overall acceptability than control. RS2 negatively affected dough machinability and tortilla shelf stability. However, 15 percent RS4 improved the DF in refined flour tortillas to meet FDA's "good source of fiber claim," without negatively affecting dough/tortilla quality.

Page generated in 0.0619 seconds