• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Results On Complexity Of Multiplication Over Finite Fields

Cenk, Murat 01 February 2009 (has links) (PDF)
Let n and l be positive integers and f (x) be an irreducible polynomial over Fq such that ldeg( f (x)) &lt / 2n - 1, where q is 2 or 3. We obtain an effective upper bound for the multiplication complexity of n-term polynomials modulo f (x)^l. This upper bound allows a better selection of the moduli when Chinese Remainder Theorem is used for polynomial multiplication over Fq. We give improved formulae to multiply polynomials of small degree over Fq. In particular we improve the best known multiplication complexities over Fq in the literature in some cases. Moreover, we present a method for multiplication in finite fields improving finite field multiplication complexity muq(n) for certain values of q and n. We use local expansions, the lengths of which are further parameters that can be used to optimize the bounds on the bilinear complexity, instead of evaluation into residue class field. We show that we obtain improved bounds for multiplication in Fq^n for certain values of q and n where 2 &lt / = n &lt / =18 and q = 2, 3, 4.
2

On The Representation Of Finite Fields

Akleylek, Sedat 01 December 2010 (has links) (PDF)
The representation of field elements has a great impact on the performance of the finite field arithmetic. In this thesis, we give modified version of redundant representation which works for any finite fields of arbitrary characteristics to design arithmetic circuits with small complexity. Using our modified redundant representation, we improve many of the complexity values. We then propose new representations as an alternative way to represent finite fields of characteristic two by using Charlier and Hermite polynomials. We show that multiplication in these representations can be achieved with subquadratic space complexity. Charlier and Hermite representations enable us to find binomial, trinomial or quadranomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. These representations are very interesting for the NIST and SEC recommended binary fields GF(2^{283}) and GF(2^{571}) since there is no optimal normal basis (ONB) for the corresponding extensions. It is also shown that in some cases the proposed representations have better space complexity even if there exists an ONB for the corresponding extension.
3

On Efficient Polynomial Multiplication and Its Impact on Curve based Cryptosystems

Alrefai, Ahmad Salam 05 December 2013 (has links)
Secure communication is critical to many applications. To this end, various security goals can be achieved using elliptic/hyperelliptic curve and pairing based cryptography. Polynomial multiplication is used in the underlying operations of these protocols. Therefore, as part of this thesis different recursive algorithms are studied; these algorithms include Karatsuba, Toom, and Bernstein. In this thesis, we investigate algorithms and implementation techniques to improve the performance of the cryptographic protocols. Common factors present in explicit formulae in elliptic curves operations are utilized such that two multiplications are replaced by a single multiplication in a higher field. Moreover, we utilize the idea based on common factor used in elliptic curves and generate new explicit formulae for hyperelliptic curves and pairing. In the case of hyperelliptic curves, the common factor method is applied to the fastest known even characteristic hyperelliptic curve operations, i.e. divisor addition and divisor doubling. Similarly, in pairing we observe the presence of common factors inside the Miller loop of Eta pairing and the theoretical results show significant improvement when applying the idea based on common factor method. This has a great advantage for applications that require higher speed.
4

Systolic design space exploration of EEA-based inversion over binary and ternary fields

Hazmi, Ibrahim 29 August 2018 (has links)
Cryptographic protocols are implemented in hardware to ensure low-area, high speed and reduced power consumption especially for mobile devices. Elliptic Curve Cryptography (ECC) is the most commonly used public-key cryptosystem and its performance depends heavily on efficient finite field arithmetic hardware. Finding the multiplicative inverse (inversion) is the most expensive finite field operation in ECC. The two predominant algorithms for computing finite field inversion are Fermat’s Little Theorem (FLT) and Extended Euclidean Algorithm (EEA). EEA is reported to be the most efficient inversion algorithm in terms of performance and power consumption. This dissertation presents a new reformulation of EEA algorithm, which allows for speedup and optimization techniques such as concurrency and resource sharing. Modular arithmetic operations over GF(p) are introduced for small values of p, observing interesting figures, particularly for modular division. Whereas, polynomial arithmetic operations over GF(pm) are discussed adequately in order to examine the potential for processes concurrency. In particular, polynomial division and multiplication are revisited in order to derive their iterative equations, which are suitable for systolic array implementation. Consequently, several designs are proposed for each individual process and their complexities are analyzed and compared. Subsequently, a concurrent divider/multiplier-accumulator is developed, while the resulting systolic architecture is utilized to build the EEA-based inverter. The processing elements of our systolic architectures are created accordingly, and enhanced to accommodate data management throughout our reformulated EEA algorithm. Meanwhile, accurate models for the complexity analysis of the proposed inverters are developed. Finally, a novel, fast, and compact inverter over binary fields is proposed and implemented on FPGA. The proposed design outperforms the reported inverters in terms of area and speed. Correspondingly, an EEA-based inverter over ternary fields is built, showing the lowest area-time complexity among the reported inverters. / Graduate

Page generated in 0.1281 seconds