Spelling suggestions: "subject:"polynomial fitting"" "subject:"dolynomial fitting""
1 |
Time Series Analysis of Age-Sex Specific Death Rates from Aplastic Anemia and the Trend in Production Amount of ChloramphenicolHAMAJIMA, NOBUYUKI, SASAKI, RYUICHIRO, OHNO, YOSHIYUKI, AOKI, KUNIO, MIZUNO, SHOICHI 03 1900 (has links)
No description available.
|
2 |
Inference Of Piecewise Linear Systems With An Improved Method Employing Jump DetectionSelcuk, Ahmet Melih 01 September 2007 (has links) (PDF)
Inference of regulatory relations in dynamical systems is a promising active research
area. Recently, most of the investigations in this field have been stimulated by the
researches in functional genomics. In this thesis, the inferential modeling problem for
switching hybrid systems is studied. The hybrid systems refers to dynamical systems
in which discrete and continuous variables regulate each other, in other words the
jumps and flows are interrelated. In this study, piecewise linear approximations are
used for modeling purposes and it is shown that piecewise linear models are capable
of displaying the evolutionary characteristics of switching hybrid systems approxi-
mately. For the mentioned systems, detection of switching instances and inference of
locally linear parameters from empirical data provides a solid understanding about
the system dynamics. Thus, the inference methodology is based on these issues. The
primary difference of the inference algorithm is the idea of transforming the switch-
ing detection problem into a jump detection problem by derivative estimation from
discrete data. The jump detection problem has been studied extensively in signal
processing literature. So, related techniques in the literature has been analyzed care-
fully and suitable ones adopted in this thesis. The primary advantage of proposed
method would be its robustness in switching detection and derivative estimation. The
theoretical background of this robustness claim and the importance of robustness for
real world applications are explained in detail.
|
3 |
Categorical structural optimization : methods and applications / Optimisation structurelle catégorique : méthodes et applicationsGao, Huanhuan 07 February 2019 (has links)
La thèse se concentre sur une recherche méthodologique sur l'optimisation structurelle catégorielle au moyen d'un apprentissage multiple. Dans cette thèse, les variables catégorielles non ordinales sont traitées comme des variables discrètes multidimensionnelles. Afin de réduire la dimensionnalité, les nombreuses techniques d'apprentissage sont introduites pour trouver la dimensionnalité intrinsèque et mapper l'espace de conception d'origine sur un espace d'ordre réduit. Les mécanismes des techniques d'apprentissage à la fois linéaires et non linéaires sont d'abord étudiés. Ensuite, des exemples numériques sont testés pour comparer les performances de nombreuses techniques d’apprentissage. Sur la base de la représentation d'ordre réduit obtenue par Isomap, les opérateurs de mutation et de croisement évolutifs basés sur les graphes sont proposés pour traiter des problèmes d'optimisation structurelle catégoriels, notamment la conception du dôme, du cadre rigide de six étages et des structures en forme de dame. Ensuite, la méthode de recherche continue consistant à déplacer des asymptotes est exécutée et fournit une solution compétitive, mais inadmissible, en quelques rares itérations. Ensuite, lors de la deuxième étape, une stratégie de recherche discrète est proposée pour rechercher de meilleures solutions basées sur la recherche de voisins. Afin de traiter le cas dans lequel les instances de conception catégorielles sont réparties sur plusieurs variétés, nous proposons une méthode d'apprentissage des variétés k-variétés basée sur l'analyse en composantes principales pondérées. / The thesis concentrates on a methodological research on categorical structural optimizationby means of manifold learning. The main difficulty of handling the categorical optimization problems lies in the description of the categorical variables: they are presented in a category and do not have any orders. Thus the treatment of the design space is a key issue. In this thesis, the non-ordinal categorical variables are treated as multi-dimensional discrete variables, thus the dimensionality of corresponding design space becomes high. In order to reduce the dimensionality, the manifold learning techniques are introduced to find the intrinsic dimensionality and map the original design space to a reduced-order space. The mechanisms of both linear and non-linear manifold learning techniques are firstly studied. Then numerical examples are tested to compare the performance of manifold learning techniques mentioned above. It is found that the PCA and MDS can only deal with linear or globally approximately linear cases. Isomap preserves the geodesic distances for non-linear manifold however, its time consuming is the most. LLE preserves the neighbour weights and can yield good results in a short time. KPCA works like a non-linear classifier and we proves why it cannot preserve distances or angles in some cases. Based on the reduced-order representation obtained by Isomap, the graph-based evolutionary crossover and mutation operators are proposed to deal with categorical structural optimization problems, including the design of dome, six-story rigid frame and dame-like structures. The results show that the proposed graph-based evolutionary approach constructed on the reduced-order space performs more efficiently than traditional methods including simplex approach or evolutionary approach without reduced-order space. In chapter 5, the LLE is applied to reduce the data dimensionality and a polynomial interpolation helps to construct the responding surface from lower dimensional representation to original data. Then the continuous search method of moving asymptotes is executed and yields a competitively good but inadmissible solution within only a few of iteration numbers. Then in the second stage, a discrete search strategy is proposed to find out better solutions based on a neighbour search. The ten-bar truss and dome structural design problems are tested to show the validity of the method. In the end, this method is compared to the Simulated Annealing algorithm and Covariance Matrix Adaptation Evolutionary Strategy, showing its better optimization efficiency. In chapter 6, in order to deal with the case in which the categorical design instances are distributed on several manifolds, we propose a k-manifolds learning method based on the Weighted Principal Component Analysis. And the obtained manifolds are integrated in the lower dimensional design space. Then the method introduced in chapter 4 is applied to solve the ten-bar truss, the dome and the dame-like structural design problems.
|
4 |
Multidimensional flow mapping for proportional valvesSitte, André, Koch, Oliver, Liu, Jianbin, Tautenhahn, Ralf, Weber, Jürgen 25 June 2020 (has links)
Inverse, multidimensional input-output flow mapping is very important for use of valves in precision motion control applications. Due to the highly nonlinear characteristic and uncertain model structure of the cartridge valves, it is hard to formulate the modelling of their flow mappings into simple parameter estimation problems. This contribution conducts a comprehensive analysis and validation of three- and four-dimensional input-output-mapping approaches for a proportional pilot operated seat valves. Therefore, a virtual and a physical test-rig setup are utilized for initial measurement, implementation and assessment. After modeling and validating the valve under consideration, as a function of flow, pressure and temperature different mapping methods are investigated. More specifically, state of the art approaches, deep-learning methods and a newly developed approach (extPoly) are examined. Especially ANNs and Polynomials show reasonable approximation results even for more than two inputs. However, the results are strongly dependent on the structure and distribution of the input data points. Besides identification effort, the invertibility was investigated.
|
Page generated in 0.0737 seconds