• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jeux graphiques et théorie de la démonstration / Graphical games and proof theory

Hatat, Florian 23 October 2013 (has links)
Ce travail est une contribution à la sémantique de jeux des langages de programmation. Il présente plusieurs méthodes nouvelles pour construire une sémantique de jeux pour un lambda-calcul de continuations.Si les sémantiques de jeux ont été développées à grande échelle pour fournir des modèles de langages fonctionnels avec références, en appel par nom et par valeur, ou pour différents fragments de la logique linéaire, certains de ses aspects demeurent cependant très subtils. Cette thèse s'intéresse spécifiquement à la notion d'innocence et à la combinatoire mise en jeu dans la composition des stratégies innocentes, en donnant pour chacune une interprétation via des constructions catégoriques standards.Nous reformulons la notion d'innocence en terme de préfaisceaux booléens sur une catégorie de vues. Pour cela, nous enrichissons la notion de parties dans notre sémantique de jeux en ajoutant des morphismes entre parties qui vont au-delà du simple ordre préfixe habituel. À partir d'une stratégie, donnée par les vues qu'elle accepte, on calcule son comportement sur toutes les parties en prenant une extension de Kan à droite.La composition des stratégies innocentes s'appuie sur les notions catégoriques habituelles de systèmes de factorisation et de foncteurs polynomiaux. Notre sémantique permet de modéliser l'interaction entre deux stratégies comme une seule stratégie dont il faut parvenir à cacher les coups internes, grâce à une technique d'élimination des coupures~: cette étape est accomplie avec une version affaiblie des systèmes de factorisation. La composition elle-même entre stratégies repose pour sa part sur l'utilisation de la théorie des foncteurs polynomiaux. Les propriétés essentielles, telles que l'associativité ou la correction de la sémantique, proviennent d'une méthode de preuve presque systématique donnée par cette théorie. / This work is a contribution to game semantics for programming languages. We describe new methods used to define a game semantics for a lambda-calculus with continuations.Game semantics have been widely used to provide models for functional programming languages with references, using call-by-name or call-by-value, or for different fragments of linear logic. Yet, some parts of these semantics are still highly subtle. This work mainly deals with the notion of innocence, and with combinatorics involved in composing innocent strategies. We provide both of them with an interpretation which relies on standard categorical constructions.We reformulate innocence in terms of boolean presheaves over a given category of views. We design for this purpose an enriched class of plays, by adding morphisms which do not appear in the traditional preorder of plays. We show how to compute the global behaviour, i.e., on every play, of a strategy given by its class of accepted views by taking a right Kan extension.Our composition of innocent strategies relies on the usual categorial notions of factorisation systems and polynomial functors. In our semantics, the interaction between two strategies is itself a strategy, in which we must hide internal moves with a cut-elimination process. This step is given by a weakened version of factorisations systems. The core of composition of strategies involves material borrowed from polynomial functors theory. This theory yields a systematic proof method for showing essential properties, such as associativity of composition, or correction of our semantics.
2

Foncteurs de Long-Moody et homologie stable des groupes de difféotopie / Long-Moody functors and stable homology of mapping class groups

Soulié, Arthur 27 June 2018 (has links)
Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d’une représentation triviale via une construction introduite par Long en 1994, à l’issue d’une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d’en dégager plus aisément des variantes. De plus, le degré de polynomialité d’un foncteur permet d’en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d’autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d’automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l’homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM(F) obtenu en appliquant un foncteur de Long-Moody. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d’autres familles de groupes. Le dernier chapitre concerne des calculs d’homologie stable pour les groupes de difféotopie. / Among the linear representations of braid groups, Burau representations are recovered from a trivial representation using a construction introduced by Long in 1994, following a collaboration with Moody. This construction, called the Long-Moody construction, thus allows to construct more and more complex representations of braid groups. In this thesis, we have a functorial point of view on this construction, which allows find more easily some variants. Moreover, the degree of polynomiality of a functor measures its complexity. We thus show that the Long-Moody construction defines a functor LM, which increases the degree of polynomiality. Furthermore, we define analogous functors for other families of groups such as mapping class groups of surfaces and 3-manifolds, symmetric groups or automorphism groups of free groups. They satisfy similar properties on the polynomiality. Hence, Long-Moody functors provide twisted coefficients fitting into the framework of the homological stability results of Randal-Williams and Wahl for the afore mentioned families of groups. Finally, we give a comparison result for the stable homology with coefficient given by a functor F and the one with coefficient given by the functor LM(F), obtained applying a Long-Moody functor. This thesis has three chapters. The first one introduces Long-Moody functors for braid groups and deals with their effect on the polynomiality. The first one deals with the generalisation of Long-Moody functors for other families of groups. The last chapter touches on stable homology computations for mapping class group.

Page generated in 0.0677 seconds