Spelling suggestions: "subject:"polyp segmentation"" "subject:"olyp segmentation""
1 |
Polyp segmentation using artificial neural networksRodríguez Villegas, Antoni January 2020 (has links)
Colorectal cancer is the second cause of cancer death in the world. Aiming to early detect and prevent this type of cancer, clinicians perform screenings through the colon searching for polyps (colorectal cancer precursor lesions).If found, these lesions are susceptible of being removed in order to further ana-lyze their malignancy degree. Automatic polyp segmentation is of primary impor-tance when it comes to computer-aided medical diagnosis using images obtained in colonoscopy screenings. These results allow for more precise medical diagnosis which can lead to earlier detection.This project proposed a neural network based solution for semantic segmenta-tion, using the U-net architecture.Combining different data augmentation techniques to alleviate the problem of data scarcity and conducting experiments on the different hyperparameters of the network, the U-net scored a mean Intersection over Union (IoU) of 0,6814. A final approach that combines prediction maps of different models scored a mean IoU of 0,7236.
|
Page generated in 0.1261 seconds