Spelling suggestions: "subject:"polyphenylene"" "subject:"polyphenylenes""
11 |
Mechanochromic Donor-Acceptor Torsional Springs Based on ortho-Substituted DiphenyldiketopyrrolopyrroleRaisch, Maximilian 24 January 2023 (has links)
Mechanochromic polymers are force-sensitive materials that change their color as a response to mechanical stimuli. This visualization of forces can be used to further optimize polymer-based materials by understanding microscopic force transduction or to display fatigue of material. Most mechanochromic systems rely on bond cleavage, so they can only distinguish between “on” and “off” state without any further correlation of the applied force with the optical signal. Although reversibility to the initial state is possible for most of these systems, it often demands time or input of energy making them rather unsuitable for sensing forces in real-time.
In this work, the development and application of mechanochromic donor (D)-acceptor (A) torsional springs is presented as a new concept for mechanochromic materials. The mechanically induced planarization of D and A leads to a continuous red-shift of both absorption and emission color. A suitable DA-system is found in ortho-substituted diphenyldiketopyrrolopyrrole (o-DPP) having the large torsional angle required for the equilibrium geometry and therefore showing blue-shifted optical spectra compared to reference compounds with a smaller torsional angle. The covalent incorporation into tough poly(meta,meta,para-phenylene) (PmmpP) by Suzuki polycondensation enables sufficient force transduction to the DA spring during uniaxial elongation of thin-film specimens. The detected mechanochromic response correlates with the applied stress and shows full reversibility upon stress release. Theoretical experiments based on density functional theory (DFT) confirm the experimental results and offer a detailed explanation of the molecular deformations responsible for the optical shift. In addition, the application as stress sensor was tested investigating the molecular force transduction in glassy PmmpP as a function of the number average molecular weight (Mn) by blending o-DPP-PmmpP probe chains of varying Mn with pristine PmmpP. The distinct mechanochromic response for entangled and non-entangled probe chains, respectively, allows the extraction of the critical molar mass (Mc) that is required for entanglements to become effective. The resulting value for the entanglement molar mass Me ≈ 1/2 Mc is in excellent agreement with the value determined by rheology.
|
12 |
Etude de l’effet du vieillissement thermique sur le comportement en fatigue ducomposite de poly (sulfure de phénylène) renforcé par des fibres de verre (PPS/FV) / Study of thermal aging effect on fatigue behaviors of a short glass fiber reinforced Polyphenylene Sulfide (PPS/GF) compositeZuo, Peiyuan 18 December 2018 (has links)
Dans ce travail, l’effet du vieillissement thermique sur le comportement en fatigue ducomposite de poly (sulfure de phénylène) renforcé par fibres de verre (PPS/FV) a été étudié. Ce matériau est d’abord étudié par différentes méthodes d’analyse afin de déterminer ses caractéristiques physicochimiqueset mécaniques. Ensuite, le matériau subit un vieillissement thermo-oxydatif accéléré à différentes températures comprises entre 100 °C et 200 °C. Certaines caractéristiques du matériau sont d’ailleurs suivies au cours du vieillissement. A partir des résultats obtenus, un mécanisme d’oxydation estproposé et un modèle cinétique est développé. La validité de ce modèle est vérifiée par les résultats expérimentaux, essentiellement obtenus par la spectrométrie infrarouge. L’effet du vieillissement sur lecomportement mécanique est étudié par les deux axes suivants : D’abord d’une manière indirecte en étudiant l’évolution de la morphologie de la phase cristalline au cours du temps et ensuite par la méthode directe. Dans cette méthode directe, premièrement, le comportement en fatigue et en traction-traction duPPS/FV a été étudié en faisant varier la fréquence et l’amplitude de la sollicitation. La courbe de Wöhler est tracée en fonction du nombre de cycles à la rupture. Il a été constaté que le vieillissement modifie lepositionnement et l’allure de la courbe de Wöhler. Ensuite les éprouvettes vieillies à différentes températures sont testées en fatigue (traction-traction) avec une amplitude maximale (σmax=40 MPa) et un rapport de chargement (R=0,1) afin de suivre l’influence de la dégradation thermo-oxydative au cours du vieillissement. Il a été constaté que l’oxydation a un effet néfaste sur le comportement en fatigue du PPS/FV. Ce matériau perd significativement de ses performances même au début du vieillissement etsurtout à haute température de vieillissement. La perte de la performance en fatigue du matériau s’accentue au fur et à mesure que le processus d’oxydation se poursuit. / In this work, the effect of thermal aging on the fatigue behavior of a glass fiber reinforced poly (phenylene sulfide) composite (PPS/GF) was studied. This material is first characterized by differentmethods of analysis to determine its physicochemical and mechanical characteristics. Subsequently, thematerial undergoes accelerated thermo-oxidative aging at different temperatures between 100 °C and 200 °C. Some characteristics of this material are followed during thermal aging. From the results obtained, an oxidation mechanism is proposed and a kinetic model is developed. The validity of this model is verifiedby the experimental results, essentially obtained by infrared spectrometry. The effect of thermal aging on mechanical behavior is studied in two ways: Firstly, indirect manner by studying the evolution of the morphology of the crystalline phase over time and subsequently by the direct method. In this directmethod, firstly the tension-tension fatigue behavior of PPS/GF was studied by varying the frequency and amplitude of stress. The Wöhler curve is plotted on the basis of the number of cycles at break. Thermalaging has been found to alter the position and shape of the Wöhler curve. Then the samples aged at different temperatures were tested by tension-tension fatigue with a maximum amplitude (σmax = 40 MPa)and a loading ratio (R = 0.1) to follow the influence of thermo-oxidative degradation during aging. It has been found that thermal aging has a detrimental effect on the fatigue behavior of PPS/GF. This material loses its performance significantly even at the beginning of aging, especially in high aging temperature.The loss of fatigue performance grows in the oven as the oxidation process continues.
|
13 |
Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a “rod–coil” graft copolymer with a polyphenylene backboneHuang, Yinjuan, Yuan, Rui, Xu, Fugui, Mai, Yiyong, Feng, Xinliang, Yan , Deyue 17 July 2017 (has links) (PDF)
This communication reports a unique ultra-large sheet formation through hierarchical self-assembly of a rod–coil graft copolymer containing a rigid polyphenylene backbone and flexible poly(ethylene oxide) (PEO) side chains. The hierarchical self-assembly process involved a distinctive morphological transition of 1D helical to 2D superstructures. The graft copolymer offers a new chance for the challenging bottom-up fabrication of ultra-large self-assembled nanosheets in solution, as well as a novel system for fundamental studies on 2D self-assembly of polymers.
|
14 |
Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a “rod–coil” graft copolymer with a polyphenylene backboneHuang, Yinjuan, Yuan, Rui, Xu, Fugui, Mai, Yiyong, Feng, Xinliang, Yan, Deyue 17 July 2017 (has links)
This communication reports a unique ultra-large sheet formation through hierarchical self-assembly of a rod–coil graft copolymer containing a rigid polyphenylene backbone and flexible poly(ethylene oxide) (PEO) side chains. The hierarchical self-assembly process involved a distinctive morphological transition of 1D helical to 2D superstructures. The graft copolymer offers a new chance for the challenging bottom-up fabrication of ultra-large self-assembled nanosheets in solution, as well as a novel system for fundamental studies on 2D self-assembly of polymers.
|
15 |
Sulfonated polyphenylenes based on Armstrong’s acid as proton conducting membranes for fuel cell applicationsKünzel-Tenner, Andy 12 September 2024 (has links)
Proton conducting membranes are a key component in fuel cell designs. Properties like proton conductivity, water uptake, ion exchange capacity and physiochemical stability dictate the performance and longevity of the complete fuel cell system. Designing a proton conductiting membrane takes several factors, such as monomer choice and their respective functionalization into account. Besides that, economically favourable reactions as well as environmental compability have to be considered. This work demonstrates the development of a fuel cell membrane material starting from broadly available, cost-efficient educts. Few reaction steps, also including cost-efficient reagents, have been employed in order to obtain a doubly sulfonated monomer based on naphthalene-1,5-disulfonic acid (Armstrong´s acid) suitable for polymerizations. Suzuki polycondensation of the given monomer partly yielded processable films for further investigation. A cost-efficient, atom-economic deprotection stategy was developed for sulfonated polyphenylenes, yielding proton conducting membranes. Further modification of the backbone structure, by incorporating an excess of hydrophobic meta,meta,meta-terphenylene units, led towards balanced properties of the material. The impact of polymer constitution, was investigated and discussed via the implementation of para,meta,para-substituted instead of meta,meta,meta-substituted terphenylene. Alternating and statistical copolymers including para,meta,para-substituted terphenylene were developed and investigated. The reported proton conducting membranes pose suitable and promising candidates for fuel cell applications.
|
Page generated in 0.0478 seconds