Spelling suggestions: "subject:"polytopic uncertainty"" "subject:"polytropic uncertainty""
1 |
Robust H2 and H¡Û Analysis and Design for Linear Discrete-Time Systems with Polytopic UncertaintyFang, Shiang-Wei 13 February 2012 (has links)
The thesis considers the problems of designing a dynamic output feedback controller to discrete time systems with polytopic uncertainty so that the closed-loop systems are DR stable with their transfer matrices having H2 norm and H¡Û norm bounded by a prescribed value ru. The formar part of the thesis provides less conservative LMI conditions for H2 and H¡Û analysis and the output feedback control of discrete system than those appeared in the current research. While the latter part of the thesis extend the current research to DR stable with H2 and H¡Û design. Finally, numerical examples are illustrated to show improvement of the propered result.
|
2 |
Controle preditivo robusto baseado em desigualdades matriciais lineares aplicado a um sistema de tanques acopladosLopes, Jos? Soares Batista 14 February 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:47Z (GMT). No. of bitstreams: 1
JoseSBL_DISSERT.pdf: 1769944 bytes, checksum: 43863b3b32771c922314a0fa73be8bf8 (MD5)
Previous issue date: 2011-02-14 / This work deals with an on-line control strategy based on Robust Model
Predictive Control (RMPC) technique applied in a real coupled tanks system.
This process consists of two coupled tanks and a pump to feed the liquid to the
system. The control objective (regulator problem) is to keep the tanks levels in
the considered operation point even in the presence of disturbance. The RMPC
is a technique that allows explicit incorporation of the plant uncertainty in the
problem formulation. The goal is to design, at each time step, a state-feedback
control law that minimizes a 'worst-case' infinite horizon objective function,
subject to constraint in the control. The existence of a feedback control law
satisfying the input constraints is reduced to a convex optimization over linear
matrix inequalities (LMIs) problem. It is shown in this work that for the plant
uncertainty described by the polytope, the feasible receding horizon state
feedback control design is robustly stabilizing. The software implementation of
the RMPC is made using Scilab, and its communication with Coupled Tanks
Systems is done through the OLE for Process Control (OPC) industrial protocol / Este trabalho tem como objetivo desenvolver uma estrat?gia de controle on-line
baseado no Controlador Preditivo Robusto (RMPC, acr?nimo do ingl?s Robust
Model Predictive Control) aplicado a um sistema real de tanques acoplados.
Este processo consiste em sistema de dois tanques conectados, cujo liquido ?
enviado aos mesmos por uma bomba. O objetivo do controle (problema
regulat?rio) ? deixar os n?veis dos tanques no ponto de opera??o considerado,
mesmo na presen?a de perturba??es. A s?ntese da t?cnica RMPC consiste em
incorporar de forma explicita as incertezas da planta na formula??o do
problema. O objetivo do projeto, a cada per?odo de amostragem, ? encontrar
uma realimenta??o de estados que minimiza o pior caso de uma fun??o
objetivo com horizonte infinito, sujeita a restri??es no sinal de controle. O
problema original, do tipo Min-max, ? reduzido em a problema de otimiza??o
convexa expresso em desigualdades matriciais lineares (LMI, Linear Matriz
Inequalities). Mostram-se, neste trabalho, a descri??o da incerteza da planta na
forma polit?pica e as condi??es de factibilidade do problema de otimiza??o. A
implementa??o do algoritmo RMPC foi feita utilizando o software Scilab e a sua
comunica??o com o sistema de tanques acoplados foi feita atrav?s do
protocolo OPC (do ingl?s OLE for Process Control)
|
Page generated in 0.0795 seconds