• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust model predictive control of an electric arc furnace refining process

Coetzee, Lodewicus Charl 21 August 2007 (has links)
This dissertation forms part of the ongoing process at UP to model and control the electric arc furniture process. Previous work focused on modelling the furnace process from empirical thermodynamic principles as well as fitting the model to actual plant data. Automation of the process mainly focused on subsystems of the process, for example the electric subsystem and the off-gas subsystem. The modelling effort, especially the model fitting resulted in parameter values that are described with confidence intervals, which gives rise to uncertainty in the model, because the parameters can potentially lie anywhere in the confidence interval space. Robust model predictive control is used in this dissertation, because it can explicityly take the model uncertainty into account as part of the synthesis process. Nominal model predictive control – not taking model uncertainty into account – is also applied in order to determine if robust model predictive control provides any advantages over the nominal model predictive control. This dissertation uses the process model from previous wok together with robust model predictive control to determine the feasibility of automating the process with regards to the primary process variables. Possible hurdles that prevent practical implementation are identified and studied. / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / MEng / unrestricted
2

Robust model predictive control of an electric arc furnace refining process

Coetzee, Lodewicus Charl 21 August 2007 (has links)
This dissertation forms part of the ongoing process at UP to model and control the electric arc furniture process. Previous work focused on modelling the furnace process from empirical thermodynamic principles as well as fitting the model to actual plant data. Automation of the process mainly focused on subsystems of the process, for example the electric subsystem and the off-gas subsystem. The modelling effort, especially the model fitting resulted in parameter values that are described with confidence intervals, which gives rise to uncertainty in the model, because the parameters can potentially lie anywhere in the confidence interval space. Robust model predictive control is used in this dissertation, because it can explicityly take the model uncertainty into account as part of the synthesis process. Nominal model predictive control – not taking model uncertainty into account – is also applied in order to determine if robust model predictive control provides any advantages over the nominal model predictive control. This dissertation uses the process model from previous wok together with robust model predictive control to determine the feasibility of automating the process with regards to the primary process variables. Possible hurdles that prevent practical implementation are identified and studied. / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / MEng / unrestricted
3

Fast model predictive control

Buerger, Johannes Albert January 2013 (has links)
This thesis develops efficient optimization methods for Model Predictive Control (MPC) to enable its application to constrained systems with fast and uncertain dynamics. The key contribution is an active set method which exploits the parametric nature of the sequential optimization problem and is obtained from a dynamic programming formulation of the MPC problem. This method is first applied to the nominal linear MPC problem and is successively extended to linear systems with additive uncertainty and input constraints or state/input constraints. The thesis discusses both offline (projection-based) and online (active set) methods for the solution of controllability problems for linear systems with additive uncertainty. The active set method uses first-order necessary conditions for optimality to construct parametric programming regions for a particular given active set locally along a line of search in the space of feasible initial conditions. Along this line of search the homotopy of optimal solutions is exploited: a known solution at some given plant state is continuously deformed into the solution at the actual measured current plant state by performing the required active set changes whenever a boundary of a parametric programming region is crossed during the line search operation. The sequence of solutions for the finite horizon optimal control problem is therefore obtained locally for the given plant state. This method overcomes the main limitation of parametric programming methods that have been applied in the MPC context which usually require the offline precomputation of all possible regions. In contrast to this the proposed approach is an online method with very low computational demands which efficiently exploits the parametric nature of the solution and returns exact local DP solutions. The final chapter of this thesis discusses an application of robust tube-based MPC to the nonlinear MPC problem based on successive linearization.
4

Robust model predictive control and scheduling co-design for networked cyber-physical systems

Liu, Changxin 27 February 2019 (has links)
In modern cyber-physical systems (CPSs) where the control signals are generally transmitted via shared communication networks, there is a desire to balance the closed-loop control performance with the communication cost necessary to achieve it. In this context, aperiodic real-time scheduling of control tasks comes into being and has received increasing attention recently. It is well known that model predictive control (MPC) is currently widely utilized in industrial control systems and has greatly increased profits in comparison with the proportional integral-derivative (PID) control. As communication and networks play more and more important roles in modern society, there is a great trend to upgrade and transform traditional industrial systems into CPSs, which naturally requires extending conventional MPC to communication-efficient MPC to save network resources. Motivated by this fact, we in this thesis propose robust MPC and scheduling co-design algorithms to networked CPSs possibly affected by both parameter uncertainties and additive disturbances. In Chapter 2, a dynamic event-triggered robust tube-based MPC for constrained linear systems with additive disturbances is developed, where a time-varying pre-stabilizing gain is obtained by interpolating multiple static state feedbacks and the interpolating coefficient is determined via optimization at the time instants when the MPC-based control is triggered. The original constraints are properly tightened to achieve robust constraint optimization and a sequence of dynamic sets used to test events are derived according to the optimized coefficient. We theoretically show that the proposed algorithm is recursively feasible and the closed-loop system is input-to-state stable (ISS) in the attraction region. Numerical results are presented to verify the design. In Chapter 3, a self-triggered min-max MPC strategy is developed for constrained nonlinear systems subject to both parametric uncertainties and additive disturbances, where the robust constraint satisfaction is achieved by considering the worst case of all possible uncertainty realizations. First, we propose a new cost function that relaxes the penalty on the system state in a time period where the controller will not be invoked. With this cost function, the next triggering time instant can be obtained at current time instant by solving a min-max optimization problem where the maximum triggering period becomes a decision variable. The proposed strategy is proved to be input-to-state practical stable (ISpS) in the attraction region at triggering time instants under some standard assumptions. Extensions are made to linear systems with additive disturbances, for which the conditions reduce to a linear matrix inequality (LMI). Comprehensive numerical experiments are performed to verify the correctness of the theoretical results. / Graduate
5

Closed-Loop Prediction for Robust and Stabilizing Optimization and Control

MacKinnon, Lloyd January 2023 (has links)
The control and optimization of chemical plants is a major area of research as it has the potential to improve both economic output and plant safety. It is often prudent to separate control and optimization tasks of varying complexities and time scales, creating a hierarchical control structure. Within this structure, it is beneficial for one control layer to be able to account for the effects of other layers. A clear example of this, and the basis of this work, is closed-loop dynamic real-time optimization (CL-DRTO), in which an economic optimization method considers both the plant behavior and the effects of an underlying model predictive controller (MPC). This technique can be expanded on to allow its use and methods to be employed in a greater diversity of applications, particularly unstable and uncertain plant environments. First, this work seeks to improve on existing robust MPC techniques, which incorporate plant uncertainty via direct multi-scenario modelling, by also including future MPC behavior through the use of the CL modelling technique of CL-DRTO. This allows the CL robust MPC to account for how future MPC executions will be affected by uncertain plant behavior. Second, Lyapunov MPC (LMPC) is a generally nonconvex technique which focuses on effective control of plants which exhibit open-loop unstable behavior. A new convex LMPC formulation is presented here which can be readily embedded into a CL-DRTO scheme. Next, uncertainty handling is incorporated directly into a CL-DRTO via a robust multi-scenario method to allow for the economic optimization to take uncertain plant behavior into account while also modelling MPC behavior under plant uncertainty. Finally, the robust CL-DRTO method is computationally expensive, so a decomposition method which separates the robust CL-DRTO into its respective scenario subproblems is developed to improve computation time, especially for large optimization problems. / Thesis / Doctor of Philosophy (PhD) / It is common for control and optimization of chemical plants to be performed in a multi-layered hierarchy. The ability to predict the behavior of other layers or the future behavior of the same layer can improve overall plant performance. This thesis presents optimization and control frameworks which use this concept to more effectively control and economically optimize chemical plants which are subject to uncertain behavior or instability. The strategy is shown, in a series of simulated case studies, to effectively control chemical plants with uncertain behavior, control and optimize unstable plant systems, and economically optimize uncertain chemical plants. One of the drawbacks of these strategies is the relatively large computation time required to solve the optimization problems. Therefore, for uncertain systems, the problem is separated into smaller pieces which are then coordinated towards a single solution. This results in reduced computation time.
6

Optimization-based Formulations for Operability Analysis and Control of Process Supply Chains

Mastragostino, Richard 10 1900 (has links)
<p>Process operability represents the ability of a process plant to operate satisfactorily away from the nominal operating or design condition, where flexibility and dynamic operability are two important attributes of operability considered in this thesis. Today's companies are facing numerous challenges, many as a result of volatile market conditions. Key to sustainable profitable operation is a robust process supply chain. Within a wider business context, flexibility and responsiveness, i.e. dynamic operability, are regarded as key qualifications of a robust process supply chain.</p> <p>The first part of this thesis develops methodologies to rigorously evaluate the dynamic operability and flexibility of a process supply chain. A model is developed which describes the response dynamics of a multi-product, multi-echelon supply chain system. Its incorporation within a dynamic operability analysis framework is shown, where a bi-criterion, two-stage stochastic programming approach is applied for the treatment of demand uncertainty, and for estimating the Pareto frontier between an economic and responsiveness criterion. Two case studies are presented to demonstrate the effect of supply chain design features on responsiveness. This thesis has also extended current paradigms for process flexibility analysis to supply chains. The flexibility analysis framework, where a steady-state supply chain model is considered, evaluates the ability to sustain feasible steady-state operation for a range of demand uncertainty.</p> <p>The second part of this thesis develops a decision-support tool for supply chain management (SCM), by means of a robust model predictive control (MPC) strategy. An effective decision-support tool can fully leverage the qualifications from the operability analysis. The MPC formulation proposed in this thesis: (i) captures uncertainty in model parameters and demand by stochastic programming, (ii) accommodates hybrid process systems with decisions governed by logical conditions/rulesets, (iii) addresses multiple supply chain performance metrics including customer service and economics, and (iv) considers both open-loop and closed-loop prediction of uncertainty propagation. The developed robust framework is applied for the control of a multi-echelon, multi-product supply chain, and provides a substantial reduction in the occurrence of back orders when compared with a nominal MPC framework.</p> / Master of Applied Science (MASc)
7

Controle preditivo robusto baseado em desigualdades matriciais lineares aplicado a um sistema de tanques acoplados

Lopes, Jos? Soares Batista 14 February 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:47Z (GMT). No. of bitstreams: 1 JoseSBL_DISSERT.pdf: 1769944 bytes, checksum: 43863b3b32771c922314a0fa73be8bf8 (MD5) Previous issue date: 2011-02-14 / This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol / Este trabalho tem como objetivo desenvolver uma estrat?gia de controle on-line baseado no Controlador Preditivo Robusto (RMPC, acr?nimo do ingl?s Robust Model Predictive Control) aplicado a um sistema real de tanques acoplados. Este processo consiste em sistema de dois tanques conectados, cujo liquido ? enviado aos mesmos por uma bomba. O objetivo do controle (problema regulat?rio) ? deixar os n?veis dos tanques no ponto de opera??o considerado, mesmo na presen?a de perturba??es. A s?ntese da t?cnica RMPC consiste em incorporar de forma explicita as incertezas da planta na formula??o do problema. O objetivo do projeto, a cada per?odo de amostragem, ? encontrar uma realimenta??o de estados que minimiza o pior caso de uma fun??o objetivo com horizonte infinito, sujeita a restri??es no sinal de controle. O problema original, do tipo Min-max, ? reduzido em a problema de otimiza??o convexa expresso em desigualdades matriciais lineares (LMI, Linear Matriz Inequalities). Mostram-se, neste trabalho, a descri??o da incerteza da planta na forma polit?pica e as condi??es de factibilidade do problema de otimiza??o. A implementa??o do algoritmo RMPC foi feita utilizando o software Scilab e a sua comunica??o com o sistema de tanques acoplados foi feita atrav?s do protocolo OPC (do ingl?s OLE for Process Control)

Page generated in 0.1278 seconds