Spelling suggestions: "subject:"polyurethaneurea"" "subject:"polyurethaneureas""
1 |
Development of Novel Blends based on Rubber and in-situ Synthesized Polyurethane-ureaTahir, Muhammad 16 February 2018 (has links) (PDF)
Polyurethane and the analogous ‘polyurethane-urea’ are high performance polymeric materials having remarkable properties such as high stiffness, abrasion and tear strengths. In many studies, the low strength rubbers have been blended with various types of polyurethanes for new and improved materials. However, until now, the reported heterogeneous blends offer only a narrow temperature range of application due to the high temperature softening of their polyurethane (-urea) phase. In addition, the conventional solution-or melt-blending methods are time and energy intensive, which tend to forfeit the economical realization of the reported blends. In contrast to earlier studies, a simplified reactive blending process is suggested to synthesize polyurethane-urea via a prepolymer route during blending with rubbers to obtain novel elastomeric materials having extended performance characteristics.
The reactive blending process is opted to prepare blends based on nitrile butadiene rubber (NBR) and in-situ synthesized polyurethane-urea (PUU). The blending is carried out in an internal mixer at a preset temperature of 100°C. The critical temperatures of the reactive blending process are determined from the chemo-rheological analysis of a premix, composed of a 4,4′-diphenylmethane diisocyanate (MDI)/polyether (PTMEG) based prepolymer admixed with 1,3-phenylene diamine (mPD). The prepared NBR/PUU blends exhibit highly improved mechanical properties. Contrary to previous reports, the reinforced dynamic-mechanical responses of the novel blends remain stable till very high temperatures (≥180°C).
The influence of diamine type on the in-situ synthesized polyurethane-urea and the performance of prepared blends are investigated. Four different diamines, namely 1,3-Phenylene diamine, 1,4-Bis(aminomethyl)benzene, 4,4′-Methylene-bis(2-chloroaniline) and 4,4ʹ-(1,3-Phenylenediisopropylidene)bisaniline, are selected to chain extend the prepolymer to PUU during blending with NBR. The chemical and domain structure of the PUUs are found to greatly influence the reinforced tensile and dynamic-mechanical responses of the NBR/PUU 70/30 blends.
The PUU (based on MDI/PTMEG prepolymer and mPD) is blended with polar (CR, XNBR) and nonpolar (NR, EPDM, sSBR) rubbers. PUU compatibilizes with all the rubbers irrespective of their polarity and reinforces their tensile and dynamic-mechanical characteristics. The use of blends in industrial applications, for example, in a truck tire tread compound and as a roller covering material, is examined. In a simplified tire tread formulation, the carbon black for NR-CB composite is partially replaced with an equivalent quantity of PUU for NR/PUU-CB composite of similar hardness. The dynamic mechanical investigations reveal that the energy dissipation and strain dependent softening is high in NR-CB as compared to the NR/PUU-CB composite. In another application, NBR/PUU blend is successfully tested as a rubber roller covering material. The tested blend-covered roller retains its structural integrity and develops less heat build-up as compared to the silica filled NBR-covered roller. This shows a substantial suitability of the blend-covered rollers for film, printing and textile processing machinery.
These novel blends are considered to be the promising new materials for many commercial applications including wheels, rubber rollers, belts or pump impellers.
|
2 |
Development of Novel Blends based on Rubber and in-situ Synthesized Polyurethane-ureaTahir, Muhammad 08 December 2017 (has links)
Polyurethane and the analogous ‘polyurethane-urea’ are high performance polymeric materials having remarkable properties such as high stiffness, abrasion and tear strengths. In many studies, the low strength rubbers have been blended with various types of polyurethanes for new and improved materials. However, until now, the reported heterogeneous blends offer only a narrow temperature range of application due to the high temperature softening of their polyurethane (-urea) phase. In addition, the conventional solution-or melt-blending methods are time and energy intensive, which tend to forfeit the economical realization of the reported blends. In contrast to earlier studies, a simplified reactive blending process is suggested to synthesize polyurethane-urea via a prepolymer route during blending with rubbers to obtain novel elastomeric materials having extended performance characteristics.
The reactive blending process is opted to prepare blends based on nitrile butadiene rubber (NBR) and in-situ synthesized polyurethane-urea (PUU). The blending is carried out in an internal mixer at a preset temperature of 100°C. The critical temperatures of the reactive blending process are determined from the chemo-rheological analysis of a premix, composed of a 4,4′-diphenylmethane diisocyanate (MDI)/polyether (PTMEG) based prepolymer admixed with 1,3-phenylene diamine (mPD). The prepared NBR/PUU blends exhibit highly improved mechanical properties. Contrary to previous reports, the reinforced dynamic-mechanical responses of the novel blends remain stable till very high temperatures (≥180°C).
The influence of diamine type on the in-situ synthesized polyurethane-urea and the performance of prepared blends are investigated. Four different diamines, namely 1,3-Phenylene diamine, 1,4-Bis(aminomethyl)benzene, 4,4′-Methylene-bis(2-chloroaniline) and 4,4ʹ-(1,3-Phenylenediisopropylidene)bisaniline, are selected to chain extend the prepolymer to PUU during blending with NBR. The chemical and domain structure of the PUUs are found to greatly influence the reinforced tensile and dynamic-mechanical responses of the NBR/PUU 70/30 blends.
The PUU (based on MDI/PTMEG prepolymer and mPD) is blended with polar (CR, XNBR) and nonpolar (NR, EPDM, sSBR) rubbers. PUU compatibilizes with all the rubbers irrespective of their polarity and reinforces their tensile and dynamic-mechanical characteristics. The use of blends in industrial applications, for example, in a truck tire tread compound and as a roller covering material, is examined. In a simplified tire tread formulation, the carbon black for NR-CB composite is partially replaced with an equivalent quantity of PUU for NR/PUU-CB composite of similar hardness. The dynamic mechanical investigations reveal that the energy dissipation and strain dependent softening is high in NR-CB as compared to the NR/PUU-CB composite. In another application, NBR/PUU blend is successfully tested as a rubber roller covering material. The tested blend-covered roller retains its structural integrity and develops less heat build-up as compared to the silica filled NBR-covered roller. This shows a substantial suitability of the blend-covered rollers for film, printing and textile processing machinery.
These novel blends are considered to be the promising new materials for many commercial applications including wheels, rubber rollers, belts or pump impellers.
|
Page generated in 0.0541 seconds