• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude d'un système d'équations différentielles stochastiques : Le cliquet de Muller

Audiffren, Julien 16 December 2011 (has links)
Le cliquet de Muller est un modèle mathématiques illustrant l'accumulation de mutations délétères dans une population asexuée. L'idée principale est que l'absence de recombinaison oblige les enfants à avoir au moins autant de mutations nocives que leurs parents, et au bout d'un certain temps, le nombre minimum de mutations délétères de la population, qui est donc un processus croissant, augmente : on dit alors que le cliquet clique. Le modèle du cliquet de Muller qui est étudié dans cette thèse est un système infini d'équations différentielles stochastiques de Fleming-Viot couplées. On montre dans une première partie d'abord que le cliquet s'actionne en temps fini p.s., puis que l'espérance du temps mis pour cliquer est également finie. On utilise pour cela des comparaisons d'équations stochastiques et des changements de temps. Dans une deuxième partie, on démontre que ce modèle est équivalent à un modèle du look-down modifié auquel on a ajouté des mutations et des morts. Puis dans la troisième partie on généralise le résultat de la deuxième à un cadre plus large de systèmes d'équations différentielles stochastiques. / Muller's Ratchet is a model from evolutionary theory describing the accumulation of deleterious mutations in asexually reproducing population. The lack of recombination implies that children have all the deleterious mutations of his parent. The minimal number of deleterious mutations carried in the population is an non-decreasing process, and if it increases we say that the Muller's ratchet clicks. The model studied in this thesis is an infinite system of stochastic differential equations. In the first chapter, we first prove that the ratchet clicks in finite time a.s., then that the clicking time has finite expectation. For this we use comparison arguments and time changes. In the second chapter, we prove that this model is equivalent to a modified look-down model with mutation and selection. In the third chapter we generalize the results of chapter 2 to a more general model.

Page generated in 0.0711 seconds