• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 7
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of surface sanitation to prevent biological hazards in animal food manufacturing

Muckey, Mary Beth January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Cassandra K. Jones / Animal food manufacturing facilities need to evaluate biological hazards within their facility due to their severity and probability to cause illness or injury in humans or animals. Control of biological hazards, including Salmonella and Porcine Epidemic Diarrhea Virus (PEDV), in animal food manufacturing facilities may require a preventative control to mitigate the risk of the hazard. Thermal processing is an effective point-in-time control, but does not prevent cross-contamination during drying, cooling, and packaging/load-out of animal food. Therefore, it may be appropriate to sanitize surfaces to prevent cross-contamination of animal food during manufacturing. The objective of the first experiment was to evaluate surface decontamination strategies for Porcine Epidemic Diarrhea Virus (PEDV) using chemical disinfectants to reduce viral RNA on various manufacturing surfaces. Concentrated liquid formaldehyde and sodium hypochlorite reduced the quantity of viral PEDV RNA on all tested surfaces. Rubber belting from a bucket elevator retained the most PEDV RNA, while the polyethylene tote bag retained the least. In the second experiment, surface decontamination was evaluated for Salmonella Typhimurium using liquid and dry chemical sanitizers on various manufacturing surfaces. Surfaces treated with concentrated commercial formaldehyde had no detectable Salmonella after treatment, and surfaces treated with medium chain fatty acids (MCFA) had at least a 4-log reduction compared to the control. The dry commercial acidulant, sodium bisulfate, was the most effective dry sanitizer tested, but had limited efficacy depending on surface type. Experiment 3 further tested the application of two chemical sanitizers against Salmonella Enteritidis on residual surface and feed contamination in pilot-scale mixers. Manufacturing sequence, but not treatment impacted feed and surface contamination of Salmonella Enteritidis. Specifically, there was Salmonella-positive residue in the batch of feed manufactured immediately after the positive control batch. However, no Salmonella residue was detected in batches of feed treated with either concentrated commercial essential oil blend or rice hulls treated with 10% MCFA. Low levels of Salmonella residues were observed from feed and surfaces manufactured after Sequence 1, but no residues were observed by Sequence 2. This data suggests that sequencing of feed during manufacturing can reduce Salmonella-positive contamination within animal food and on manufacturing surfaces, particularly after the second batch or with the use of chemical treatments. In summary, liquid sanitizers have been shown to be effective at reducing Salmonella spp. and PEDV contamination on a variety of animal food manufacturing surfaces, but application and practicality may be limited.
2

CHARACTERIZATION AND APPLICATION OF MONOCLONAL ANTIBODIES AGAINST PORCINE EPIDEMIC DIARRHEA VIRUS

WANG, YIN January 1900 (has links)
Master of Science / Department of Diagnostic Medicine/Pathobiology / Weiping Zhang / Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea to pigs at all ages, resulting in high mortality rate of 80-100% in piglets less than one week old. Within one year after the outbreak in April 2013, PEDV has rapidly spread in the US and causes the loss of over 10% of the US pig population. Monoclonal antibody (mAb) is a key reagent for rapid diagnosis of PEDV infection. In this study, we produced a panel of mAbs against nonstructural protein 8 (nsp8), spike(S) protein, and nucleocapsid (N) protein of PEDV. Four mAbs were selected, which can be used in various diagnostic assays, including indirect immunofluorescence assay (IFA), enzyme-linked immunoabsorbent assay (ELISA), Western Blot, immunoprecipitation (IP), immunohistochemistry (IHC) test and fluorescence in situ hybridization (FISH). The mAb 51-79 recognizes amino acid (aa) 33-60 of nsp8, mAb 70-100 recognizes aa1371-1377 of S2 protein, and mAb 66-155 recognizes aa 241-360 of N protein, while mAb 13-519 is conformational. Using the mAb70-100, the immunoprecipitated S2 fragment was examined by protein N-terminal sequencing, and cleavage sites between S1 and S2 was identified. In addition, this panel of mAbs was further applied to determine the infection site of PEDV in the pig intestine. IHC test result showed that PEDV mainly located at the mid jejunum, distal jejunum and ileum. Results from this study demonstrated that this panel of mAbs provides a useful tool for PEDV diagnostics and pathogenesis studies.
3

Interventional strategies to reduce biological hazards in animal feed

Cochrane, Roger January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / Cassandra K. Jones / Porcine epidemic diarrhea virus (PEDV) is a heat-sensitive virus that devastated the United States swine industry. Because of its heat sensitivity, it was hypothesized that a pellet mill mimicking commercial thermal processing may mitigate PEDV infectivity. From the results, it was determined that a conditioning time of 30 sec or greater and temperatures above 54.4°C were effective point-in-time kill steps to inactive PEDV in a research setting. However, this does not prevent subsequent recontamination after pelleting as it is a point-in-time mitigation step. To further explore this, various mitigation additives were evaluated to prevent or mitigate PEDV post-pellet contamination in swine feed and ingredients. Various additives were examined across 3 experiments and included mitigation additives of medium chain fatty acids (MCFA), organic acids (OA), essential oils (OA), formaldehyde based products, and sodium bisulfate. From Exp. 1, formaldehyde, medium chain fatty acids (MCFA), essential oils (EO), and organic acid (OA) each decreased detectable PEDV RNA compared to the control (P<0.05). Additionally, PEDV stability over time was influenced by matrix as the meat and bone meal and spray-dried animal plasma resulted in a greater (P<0.05) quantity of detectable PEDV RNA over 42 days compared to that of the swine diet and blood meal. In Exp. 2, the 1% MCFA inclusion was equally effective at mitigating PEDV as a commercially available formaldehyde product in the complete swine diet. To further explore the effects of MCFA against PEDV, Exp. 3 was conducted to evaluate lower inclusion levels of MCFA and fat sources containing MCFA. It was noted that formaldehyde, 1% MCFA (1:1:1: of caproic, caprylic, and capric acids), 0.66% caproic, 0.66% caprylic, and 0.66% capric acids enhance the RNA degradation of PEDV in swine feed as determined by a bioassay. The MCFA were also evaluated against Salmonella Typhimurium, Generic Escherichia coli, Enterotoxigenic Escherichia coli, and Campylobacter coli. It was noted that the efficacy of the MCFA varied between each bacteria species with caproic and caprylic being the most effective. Commercial developmental products were also tested and determined that Product A and B provided the lowest MIC values across Salmonella Typhimurium, Generic Escherichia coli, and Enterotoxigenic Escherichia coli (P < 0.05). Product A and B were further tested in an animal disease trial utilizing a strain of enterotoxigenic Escherichia. coli O149:K91: K88. From d 7 to 14, chlortetracycline, 1:1:1 blend, and Product B, all improved G:F compared to the control (P<0.05). This also led to chlortetracycline and Product B having an improvement (P<0.05) over the control diet from d 0 to 14. A treatment × day interaction for the enterotoxigenic E. coli plate scores was observed (P < 0.05), which occurred because of the decrease (P<0.05) in plate scores for Product B from d 1 to d 14 and an increase (P<0.05) in chlortetracycline from d 7 to 14. A decrease (P<0.05) in plasma urea nitrogen and haptoglobin was observed as time increased from d -2 to 14. In summary MCFA have shown to be an effect interventional mitigation strategy against PEDV and various bacteria.
4

Characterization and application of monoclonal antibodies against porcine epidemic diarrhea virus

Wang, Yin January 1900 (has links)
Master of Science / Department of Diagnostic Medicine and Pathobiology / Weiping Zhang / Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea to pigs at all ages, resulting in high mortality rate of 80-100% in piglets less than one week old. Within one year after the outbreak in April 2013, PEDV has rapidly spread in the US and causes the loss of over 10% of the US pig population. Monoclonal antibody (mAb) is a key reagent for rapid diagnosis of PEDV infection. In this study, we produced a panel of mAbs against nonstructural protein 8 (nsp8), spike(S) protein, and nucleocapsid (N) protein of PEDV. Four mAbs were selected, which can be used in various diagnostic assays, including indirect immunofluorescence assay (IFA), enzyme-linked immunoabsorbent assay (ELISA), Western Blot, immunoprecipitation (IP), immunohistochemistry (IHC) test and fluorescence in situ hybridization (FISH). The mAb 51-79 recognizes amino acid (aa) 33-60 of nsp8, mAb 70-100 recognizes aa1371-1377 of S2 protein, and mAb 66-155 recognizes aa 241-360 of N protein, while mAb 13-519 is conformational. Using the mAb70-100, the immunoprecipitated S2 fragment was examined by protein N-terminal sequencing, and cleavage sites between S1 and S2 was identified. In addition, this panel of mAbs was further applied to determine the infection site of PEDV in the pig intestine. IHC test result showed that PEDV mainly located at the mid jejunum, distal jejunum and ileum. Results from this study demonstrated that this panel of mAbs provides a useful tool for PEDV diagnostics and pathogenesis studies.
5

Porcine Epidemic Diarrhea Virus (PEDV) Co-Infection Induced Chlamydial Persistence/Stress Does Not Require Viral Replication

Schoborg, Robert V., Borel, Nicole 01 January 2014 (has links)
Chlamydiae may exist at the site of infection in an alternative replicative form, called the aberrant body (AB). ABs are produced during a viable but non-infectious developmental state termed "persistence" or "chlamydial stress." As persistent/stressed chlamydiae: (i) may contribute to chronic inflammation observed in diseases like trachoma; and (ii) are more resistant to current anti-chlamydial drugs of choice, it is critical to better understand this developmental stage. We previously demonstrated that porcine epidemic diarrhea virus (PEDV) co-infection induced Chlamydia pecorum persistence/stress in culture. One critical characteristic of persistence/stress is that the chlamydiae remain viable and can reenter the normal developmental cycle when the stressor is removed. Thus, we hypothesized that PEDV-induced persistence would be reversible if viral replication was inhibited. Therefore, we performed time course experiments in which Vero cells were C. pecorum/PEDV infected in the presence of cycloheximide (CHX), which inhibits viral but not chlamydial protein synthesis. CHX-exposure inhibited PEDV replication, but did not inhibit induction of C. pecorum persistence at 24 h post-PEDV infection, as indicated by AB formation and reduced production of infectious EBs. Interestingly, production of infectious EBs resumed when CHX-exposed, co-infected cells were incubated 48-72 h post-PEDV co-infection. These data demonstrate that PEDV co-infection-induced chlamydial persistence/stress is reversible and suggest that this induction (i) does not require viral replication in host cells; and (ii) does not require de novo host or viral protein synthesis. These data also suggest that viral binding and/or entry may be required for this effect. Because the PEDV host cell receptor (CD13 or aminopeptidase N) stimulates cellular signaling pathways in the absence of PEDV infection, we suspect that PEDV co-infection might alter CD13 function and induce the chlamydiae to enter the persistent state.
6

Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines

Hou, Yixuan 03 October 2019 (has links)
No description available.
7

Study towards the development of effective and safe live attenuated PEDV vaccines

Niu, Xiaoyu 30 September 2022 (has links)
No description available.
8

Vaccine Development Against Porcine Epidemic Diarrhea Virus Utilizing the Hepatitis B Virus Core Antigen Protein

Gillam, Francis 11 January 2018 (has links)
Porcine epidemic diarrhea Virus (PEDV) is a virus effecting swine. It is the cause of disease that manifests with symptoms ranging from depression, to severe dehydration and death. Young piglets are particularly susceptible to the virus, which can reach mortality rates of 100%. Presence of the virus on a swine farm can therefore cause severe economic losses. Treatments currently exist for PEDV, but are mostly generated from the virus itself. There has recently been renewed interest in a vaccine that is made from a different source, which might help eliminate some of the side effects of those that currently exist on the market. This project outlines three experiments performed in animals. During the first experiment, a structural protein from the Hepatitis B virus was genetically altered to include important structural portions of PEDV. This new protein is generated in E. coli and purified. After purification, the protein assembles into a virus-like particle (VLP). VLPs are structural proteins of existing viruses that are expressed and assembled to mimic the virus. By doing so, the immune system recognizes the protein as a potential threat, and launches a response in the form of antibodies. Manipulations of the VLPs as describe herein allow the new vaccine to generate antibodies toward other diseases such as PEDV. Although all five of the vaccines used in the first experiment were able to generate appropriate antibodies, only two of them were effective at preventing PEDV from entering susceptible cells (virus neutralization). A second experiment, with three newly designed vaccines was therefore performed. This experiment, like the first, was successful in producing antibodies to several of the included PEDV protein sections, but none were able to neutralize the virus. These results led to a third experiment, during which further design improvements were made to the basic vaccine structure in an attempt to increase the neutralization capabilities of the vaccines. The results from the third experiment indicated that several changes to the vaccine increased the immune response to the structural portions of PEDV, providing a better overall vaccine candidate. This also led to the conclusion that one specific sequence from PEDV has a better ability to neutralize the virus than the other sections. / PHD
9

Clinical disease and host response of nursery pigs following challenge with emerging and re-emerging swine viruses

Niederwerder, Megan C. January 1900 (has links)
Doctor of Philosophy / Diagnostic Medicine/Pathobiology / Raymond R. R. Rowland / Emerging viral diseases cause significant and widespread economic losses to U.S. swine production. Over the last 25 years, porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and porcine epidemic diarrhea virus (PEDV) have emerged or re-emerged, costing the industry billions through increased mortality and clinical or subclinical reductions in growth. Nursery pigs are greatly affected by these viruses due to high susceptibility to primary and secondary infections after weaning. However, clinical disease occurs in only a subpopulation of infected pigs and can vary drastically from sudden death to poor growth performance. This thesis documents a series of 4 studies where nursery pigs were challenged with either PRRSV/PCV2 or PEDV; the associations between clinical outcome and several factors affecting viral pathogenesis were investigated. In the first study, the administration of PRRS modified live virus vaccine prior to co-challenge with PRRSV/PCV2 was shown to protect against PRRS but enhance PCV2 replication and pathogenesis. This study provides insight into the role that PRRS vaccination has in both the control and potentiation of clinical disease. In the second study, microbial populations were compared between pigs with the best and worst clinical outcome following PRRSV/PCV2 co-infection. Increased fecal microbiome diversity was associated with improved clinical outcome; however, worst clinical outcome pigs had prolonged and greater virus replication, highlighting the host response to viral challenge as a primary determinant of clinical outcome. In the third study, 13 clinical phenotypes were compiled for >450 pigs after PRRSV/PCV2 co-infection. Duration of dyspnea and the presence of muscle wasting had the strongest associations with reduced weight gain. This study highlights the opportunity to improve animal welfare and production through improvements in clinical health. In the fourth study, clinical disease was mild to moderate and occurred within the first week after pigs were challenged with PEDV. However, PEDV was detected weeks after clinical disease had resolved and may implicate nursery pigs as an important source of viral carriage and transmission. Overall, the goal of this thesis was to develop models for understanding the impact of emerging and re-emerging viruses to improve recognition and control of disease.
10

Decoding protein networks during porcine epidemic diarrhea virus (PEDV) infection through proteomics

Valle-Tejada, Camila Andrea 07 1900 (has links)
No description available.

Page generated in 0.0856 seconds