• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 382
  • 71
  • 65
  • 42
  • 20
  • 19
  • 10
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 752
  • 121
  • 120
  • 92
  • 79
  • 70
  • 65
  • 60
  • 58
  • 57
  • 55
  • 55
  • 53
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Properties of cokes and graphites

Murdie, Neil January 1985 (has links)
Carbons and graphites have many industrial applications e.g. synthetic graphite (as moderators in the nuclear industry), natural flake graphites (for application in the manufacture of anti-piping agents) and metallurgical coke (for use in the blast furnace). The overall objective of this Thesis is to study effects of changes in properties of graphites and cokes by (i) radiolytic gasification of graphite, (ii) intercalation of natural flake graphites by sulphuric acid and (iii) intercalation of metallurgical cokes by potassium. (i) Radiolytic gasification Methods of image analysis have been developed to study the pore structure of graphite. These methods have been used to investigate the change in pore structure of a series of radiolytically gasified graphites. To examine the pore structure of the graphites by optical and scanning electron microscopy, each sample was vacuum-impregnated with a slow-setting resin containing a yellow dye. A semi-automatic image analysis system (Micromeasurements VrDS) linked to the optical microscope, enabled data on porosity to be obtained. The pore outline data, so obtained, were used by programmes on the controlling microcomputer to provide pore parameters such as cross-sectional areas, perimeters, Feret's diameters and shape factors. The results show that pores less than 100 ~m2 cross-sectional area are gasified because of the inability of the inhibitors (carbon monoxide and methane) to deactivate activated CO2* species before reaching the pore wall. Pores >1000 ~m2 cross-sectional area show only small changes in size and shape because of the deposition of carbon from methane inhibitor in these pores and are only developed at weight losses >17.0 wt.% by coalescence of open porosity <100 ~m2 cross-sectional area. (ii) Intercalation of natural flake graphite's Techniques have been developed to distinguish between natural flake graphite's and establish those suitable for use as anti-piping agents. Techniques used to examine the structure of natural flake graphite's include EDAX analysis to monitor amounts and distributions of elements, bromine intercalation to assess crystallographic ordering and image analysis to examine size and shape of the natural flake graphite's before and after intercalation. Results indicated that performances of the natural flake graphite's for use in intercalation studies can be predicted by assessing morphology and extents of fissures, bromine uptake, and mineral distribution of the flakes. Flakes suitable for intercalation studies have a mean flake thickness of ~25 ~m. Bromine uptake can be used to give an indication of the perfection of stacking. A high bromine uptake is desirable indicating a high stacking order i.e. good crystal perfection. Fissures in the natural flake graphite's are advantageous particularly in flakes of 40-70 ~m thick, by facilitating, a mean flake thickness of ~25 ~m. Fissures in the intercalated flake are detrimental as they may allow an 'escape route' to desorbing intercalate. Mineral impurities in the graphite flakes are of importance as they influence the flake thickness and cleavage properties. (iii) Intercalation of metallurgical cokes by potassium It is considered that the alkali metals, particularly potassium, have a crucial role in the breakdown of coke material during blast furnace operation. Extents of degradation, related to coke structure (optical texture) are examined to identify those structural aspects of cokes which are susceptible to alkali attack. The mechanism of potassium entering into metallurgical coke is investigated, ~. solid state diffusion, intercalation, absorption and adsorption. Metallurgical cokes, with a range of heat-treatment temperatures, graphitic carbon, and a shot-coke of small sized optical texture were heated with potassium vapour, either from direct addition of metal, or formed by heating a mixture of potassium carbonate with carbon black.Results of the study indicate that the rank of coking coal, and hence the optical texture of the derived coke, influenced the extents of degradation of the metallurgical cokes. Cokes from high rank coals (204 and 30lb) were consistently less degraded than those from lower rank coals (401 and 502 rank). Optical texture studies indicated that those optical textures most resistant to degradation by potassium vapour were of single component textures (flow anisotropy and isotropic). Multi-component textures as found in metallurgical cokes were less resistant to alkali attack. Heat-treatment of metallurgical cokes increased their resistance to degradation (2800 > 2400 > 2000 > 1500 > 11000C HTT). Degradation of metallurgical coke is thought to be due to mixed staging (yellow/blue/black colouration) of intercalates in graphitizable carbons because of non-uniform concentration of potassium causing high stresses and leading to break-up by macro-crack formation.
12

Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

De La Garza Martinez, Pablo 01 May 2016 (has links)
Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.
13

The nanoporous morphology of photopolymerized crosslinked polyacrylamide hydrogels

Wang, Jian 15 May 2009 (has links)
Nanoporous polymer hydrogels offer a desirable combination of mechanical, optical, and transport characteristics that have placed them at the core of a variety of biomedical technologies including engineered tissue scaffolds, substrates for controlled release of pharmaceutical compounds, and sieving matrices for electrophoretic separation of DNA and proteins. Ultimately, we would like to obtain a detailed picture of the nanoscale pore morphology and understand how it can be manipulated so that we can rationally identify gel formulations best suited for a specific application. But this goal has proven elusive because the most fundamental descriptors of the pore network architecture (e.g., the average pore size and its polydispersity) are particularly difficult to measure in polymer hydrogels. Here we introduce an approach that enables both the mean pore size and the pore size distribution to be quantitatively determined without prior knowledge of any physical material parameters A novel technique to prepare TEM samples was developed so that the nanoscale hydrogel pore size, pore shape and distribution are clearly visualized and quantitatively studied for the first time. The pore sizes of the hydrogel are also estimated with rheology. A new fixture is used in the rheometer and the whole polymerization process can be directly studied using an in-situ rheology experiment. A series of thermoporometry experiments are also conducted, and suitable methods and equations to study hydrogel pore size and distribution are chosen. The pore size derived from TEM, rheology, DSC is compared and their values are self-consistent. These techniques help us understand how the nanoporous morphology of crosslinked polyacrylamide hydrogels is influenced by their chemical composition and polymerization conditions. It is interesting to find hydrogels with similar pore size but different distribution. For two hydrogels with similar pore size, the broader the distribution, the faster the release rate and the higher the accumulated release percentage. So we can control the release of trapped molecules by simply varying the hydrogel pore size distribution. This discovery would have a very promising potential in the application of pharmaceuticals.
14

Effect of Pore Geometry on Membrane Flux Decline due to Pore Constriction by Particles in Ultra and Micro Filtration

Faghihi, Mohammad Hosein 05 July 2013 (has links)
Membrane separation is known as an economic and environmental friendly mode of separation and is used in various types of separation processes. The major challenges regarding membrane separation are the internal and external fouling of the membrane which reduces the permeate flux of the membranes by inducing extra resistance to flow. Synthetic membranes are designed and implemented to separate solutes or particles in a feed stream by rejecting them and permitting the liquid to pass through the membrane pores; however, most of the feed streams, such as wastewaters, contain more than one type of solute. This yields a distribution of particle sizes in the feed. Many wastewaters contain supracolloidal particles (1-100µm). Most membrane separations aim to remove these particles from the feed solution. Wastewaters also contain colloidal particles (0.001-1µm). These particles are less concentrated than supracolloidal particles in the feed but they are more problematic since they are able to penetrate into the membrane pores and cause internal fouling which is the main source of irreversible flux decline. Fouling mechanisms are traditionally classified into four types. Among these mechanisms, standard pore blocking (pore constriction) refers to internal fouling while the other types model external fouling. On the effect of pore geometry, as a morphological factor, studies to date have been limited to external membrane fouling. However, it is believed that up to 80% of the permeate flux can be affected by pore constriction which is caused by particle penetration and deposition into membrane pores (internal fouling). The effect of pore geometry, as a factor, in flux decline due pore constriction of membranes was investigated in this work. Pore constriction by particles was approximated by maximum particle deposition onto the interior wall of the pores and simulated using MATLAB image processing toolbox (MIPT). Sixteen different basic geometries were considered for the simulation of pore constriction by particles. These include circular pores, 3 groups of rectangular, triangular and oval geometries at four different aspect ratios (3, 7, 15 and 30) and three combined geometries of star, cross and a rectangle with rounded ends. The simulation of maximum particle deposition onto pore walls was carried out for a range of particle diameters to pore hydraulic diameters (λ) of 0.1 to the complete rejection of the particle by the pore. As the result of the simulation, the ratio of the available pore cross-sectional area after pore constriction to initial pore cross-sectional area (α) and the ratio of pore channel hydraulic diameter after pore constriction to initial pore hydraulic diameter (β) were measured and recorded. It was observed that for λ<0.2 (small particles compared to pore size) some geometries showed the same values of α and β. However, for λ>0.2, other geometries showed different values of α and β. It was also observed that several geometries reject the particle at different λ ratios. Using the values of α and β, the fluxes of membranes having different pore geometries, after pore constriction by particles, were calculated and compared. These results show that for a very small particle size, compared to pore size, there is no preference for a specific geometry over another; however, for intermediate particle sizes, membranes having triangular and star pore shapes provide higher fluxes compared to other membranes. The effect of pore aspect ratio (PAR) on the flux of membranes after pore constriction was also examined. In order to compare the combined effect of pore geometry on particle rejection and pore constriction, fluxes of membranes having different pore shapes were compared in light of several pore size distributions (PSDs). For this part of the study, the pore geometries of circular, rectangular, triangular and oval were considered at four PARs. Different values for the hydraulic diameter of the largest rejecting pore (D_(H,LRP)) were observed for different geometries. Rectangular pores showed the largest values of D_(H,LRP), at a constant PAR, which affirms their superior rejection behavior. The overall flux of the membranes after pore constriction was determined by a combination of three effects: the position of D_(H,LRP) in the PSD, the pore constriction behavior of the pore geometry and the shape of the PSD. Generally, for the PSDs for which most of the pores in the membrane physically reject the particles, membranes having rectangular pores showed higher fluxes, due to the greater rejection of particles. However, for PSDs for which a major number of pores are constricted by the particles, membranes with triangular pores offered higher flux after membrane pore constriction. The results of this work indicate a new direction for the design of membranes having defined pore geometries.
15

Effect of Pore Geometry on Membrane Flux Decline due to Pore Constriction by Particles in Ultra and Micro Filtration

Faghihi, Mohammad Hosein January 2013 (has links)
Membrane separation is known as an economic and environmental friendly mode of separation and is used in various types of separation processes. The major challenges regarding membrane separation are the internal and external fouling of the membrane which reduces the permeate flux of the membranes by inducing extra resistance to flow. Synthetic membranes are designed and implemented to separate solutes or particles in a feed stream by rejecting them and permitting the liquid to pass through the membrane pores; however, most of the feed streams, such as wastewaters, contain more than one type of solute. This yields a distribution of particle sizes in the feed. Many wastewaters contain supracolloidal particles (1-100µm). Most membrane separations aim to remove these particles from the feed solution. Wastewaters also contain colloidal particles (0.001-1µm). These particles are less concentrated than supracolloidal particles in the feed but they are more problematic since they are able to penetrate into the membrane pores and cause internal fouling which is the main source of irreversible flux decline. Fouling mechanisms are traditionally classified into four types. Among these mechanisms, standard pore blocking (pore constriction) refers to internal fouling while the other types model external fouling. On the effect of pore geometry, as a morphological factor, studies to date have been limited to external membrane fouling. However, it is believed that up to 80% of the permeate flux can be affected by pore constriction which is caused by particle penetration and deposition into membrane pores (internal fouling). The effect of pore geometry, as a factor, in flux decline due pore constriction of membranes was investigated in this work. Pore constriction by particles was approximated by maximum particle deposition onto the interior wall of the pores and simulated using MATLAB image processing toolbox (MIPT). Sixteen different basic geometries were considered for the simulation of pore constriction by particles. These include circular pores, 3 groups of rectangular, triangular and oval geometries at four different aspect ratios (3, 7, 15 and 30) and three combined geometries of star, cross and a rectangle with rounded ends. The simulation of maximum particle deposition onto pore walls was carried out for a range of particle diameters to pore hydraulic diameters (λ) of 0.1 to the complete rejection of the particle by the pore. As the result of the simulation, the ratio of the available pore cross-sectional area after pore constriction to initial pore cross-sectional area (α) and the ratio of pore channel hydraulic diameter after pore constriction to initial pore hydraulic diameter (β) were measured and recorded. It was observed that for λ<0.2 (small particles compared to pore size) some geometries showed the same values of α and β. However, for λ>0.2, other geometries showed different values of α and β. It was also observed that several geometries reject the particle at different λ ratios. Using the values of α and β, the fluxes of membranes having different pore geometries, after pore constriction by particles, were calculated and compared. These results show that for a very small particle size, compared to pore size, there is no preference for a specific geometry over another; however, for intermediate particle sizes, membranes having triangular and star pore shapes provide higher fluxes compared to other membranes. The effect of pore aspect ratio (PAR) on the flux of membranes after pore constriction was also examined. In order to compare the combined effect of pore geometry on particle rejection and pore constriction, fluxes of membranes having different pore shapes were compared in light of several pore size distributions (PSDs). For this part of the study, the pore geometries of circular, rectangular, triangular and oval were considered at four PARs. Different values for the hydraulic diameter of the largest rejecting pore (D_(H,LRP)) were observed for different geometries. Rectangular pores showed the largest values of D_(H,LRP), at a constant PAR, which affirms their superior rejection behavior. The overall flux of the membranes after pore constriction was determined by a combination of three effects: the position of D_(H,LRP) in the PSD, the pore constriction behavior of the pore geometry and the shape of the PSD. Generally, for the PSDs for which most of the pores in the membrane physically reject the particles, membranes having rectangular pores showed higher fluxes, due to the greater rejection of particles. However, for PSDs for which a major number of pores are constricted by the particles, membranes with triangular pores offered higher flux after membrane pore constriction. The results of this work indicate a new direction for the design of membranes having defined pore geometries.
16

Characterization of some porous materials by physical adsorption and small angle X-ray scattering

Mitropoulos, Nasos January 1989 (has links)
No description available.
17

The measurement and modelling of the pore-level network properties of sandstones

Spearing, Michael Carlos January 1991 (has links)
No description available.
18

Investigation of the Hydromechanical Effects of Lithostatic Unloading in Open-pit Mines

Soeller, Christopher Philip January 2016 (has links)
Thesis advisor: Alan Kafka / The stability of open-pit mine walls and other geotechnical infrastructure is a function of geometry, material properties and groundwater conditions (pore pressure distribution). A portion of failures are attributed to the effect of pore water pressures within the mine wall slopes. The objective of this research was to investigate the interaction between the increments/decrements of stresses that occur during the lithostatic unloading/excavation of the pit and the increments/decrements of pore water pressures. This interaction can be described by the theory of linear poroelasticity, which incorporates the coupling between changes in fluid pressure and changes in stress in porous media. The results of this thesis are displayed in the form of contour charts and graphs. / Thesis (MS) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
19

Investigation into the importance of geochemical and pore structural heterogeneities for shale gas reservoir evaluation

Ross, Daniel John Kerridge 05 1900 (has links)
An investigation of shale pore structure and compositional/geochemical heterogeneities has been undertaken to elucidate the controls upon gas capacities of potential shale gas reservoirs in northeastern British Columbia, western Canada. Methane sorption isotherms, pore structure and surface area data indicate a complex interrelationship of total organic carbon (TOC) content, mineral matter and thermal maturity affect gas sorption characteristics of Devonian-Mississippian (D-M) and Jurassic strata. Methane and carbon dioxide sorption capacities of D-M shales increase with TOC content, due to the microporous nature of the organic matter. Clay mineral phases are also capable of sorbing gas to their internal structure; hence D-M shales which are both TOC- and clay-rich have the largest micropore volumes and sorption capacities on a dry basis. Jurassic shales, which are invariably less thermally mature than D-M shales, do not have micropore volumes which correlate with TOC. The covariance of methane sorption capacity with TOC, independent of micropore volume, indicates a solute gas contribution (within matrix bituminite) to the total gas capacity. On a wt% TOC basis, D-M shales sorb more gas than Jurassic shales: a result of thermal-maturation induced, structural transformation of the D-M organic fraction. Organic-rich D-M strata are considered to be excellent candidates for gas shales in Western Canada. These strata have TOC contents ranging between 1-5.7 wt%, thermal maturities into the dry-gas region, and thicknesses in places of over 1000 m. Total gas capacity estimates range between 60 and 600 bcf/section where a substantial percentage of the gas capacity is free gas, due to high reservoir temperatures and pressures. Inorganic material influences modal pore size, total porosity and sorption characteristics of D-M shales. Carbonate-rich samples often have lower organic carbon contents (oxic deposition) and porosity, hence potentially lower sorbed and free-gas capacities. Highly mature Devonian shales are both silica and TOC-rich (up to 85% quartz and 5 wt% TOC) and as such, deemed excellent potential shale gas reservoirs because they are both brittle(fracable), and gas-charged. However, quartz-rich Devonian shales display tight-rock characteristics, with poorly developed fabric, small median pore diameters and low permeabilities. Hence potential `frac-zones' will require an increased density of hydraulic fracture networks for optimum gas production.
20

Pore pressure within dipping reservoirs in overpressured basins

Gao, Baiyuan 30 October 2013 (has links)
A systematic study of how mudstone permeability impacts reservoir pore pressure is important to understand the regional fluid field within sedimentary basins and the control of sediment properties on subsurface pressure. I develop a 2D static model to predict reservoir overpressure from information estimated from the bounding mudstones and structural relief. This model shows that close to a dipping reservoir, the mudstone permeability is high in the up-dip location and low in the down-dip location. This characteristic mudstone permeability variation causes the depth where reservoir pressure equals mudstone pressure (equal pressure depth) to be shallower than the mid-point of the reservoir structure. Based on the 2D static model, I constructed a nomogram to determine the equal pressure depth by considering both farfield mudstone vertical effective stress and reservoir structural relief. I find the equal pressure depth becomes shallower with decreasing vertical effective stress, increasing reservoir structural relief, and increasing mudstone compressibility. Pressure predicted by the static model agrees with pressure predicted by a more complete model that simulates the evolution of the basin and is supported by field observations in the Bullwinkle Basin (Green Canyon 65, Gulf of Mexico). This study can be applied to reduce drilling risk, analyze trap integrity, and facilitate safe and efficient exploration. / text

Page generated in 0.0684 seconds