• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 388
  • 71
  • 65
  • 42
  • 20
  • 19
  • 10
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 757
  • 123
  • 122
  • 92
  • 79
  • 70
  • 65
  • 60
  • 58
  • 58
  • 55
  • 55
  • 54
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Production And Characterization Of Activated Carbon From Apricot Stones

Yagsi, Nezih Ural 01 April 2004 (has links) (PDF)
In this study, characterization of activated carbon produced from apricot stones by chemical activation technique using phosphoric acid (H3PO4) as activating agent, at relatively low temperatures (300, 400 and 500oC), was investigated. To produce activated carbon acid impregnated samples were heated / at a heating rate of 20oC/min to the final carbonization temperatures, 300oC, 400oC and 500oC. For each temperature four different carbonization time (90, 120, 180 and 210 min.) were used to produce twelve different activated carbons. The pore structures of activated carbons were determined as follows: The volume and area of macropores in the pore diameter range of 8180-50 nm were determined by mercury intrusion porosimetry. Mesopore (in the range of 50-2 nm) areas and volumes were determined by N2 gas adsorption technique at -195.6oC, BET surface areas of the samples were also determined, in the relative pressure range of 0.05 to 0.02, by the same technique. The pore volume and the area of the micropores with diameters less than 2 nm were determined by CO2 adsorption measurements at 0oC by the application of Dubinin Radushkevich equation. N2 (BET) and CO2 (D-R) surface areas of the samples were in the range of 444-709m2/g and 433-650m2/g, respectively. AC4.2 sample (carbonization temperature of 400oC and carbonization time of 120 min.) was found to have the maximum BET and CO2 area as 709m2/g and 650m2/g, respectively. Surface areas of the samples consisting of around 10% mesopores and over 90% micropores. N2 adsorption isotherms also confirm that pores are in the micropore range.
262

Production And Characterization Of Activated Carbon From Hazelnut Shell And Hazelnut Husk

Cuhadar, Cigdem 01 June 2005 (has links) (PDF)
In this study, the pore structures and surface areas of activated carbons produced from hazelnut shell and hazelnut husk by chemical activation technique using phosphoric acid (H3PO4), at relatively low temperatures (300, 400 and 500oC), were investigated. Raw materials were impregnated with different H3PO4 solutions of 30%, 40%, 50% and 60% by weight. To produce activated carbon, acid impregnated samples were heated / at a heating rate of 20 oC/min to the final carbonization temperature and held at that temperature for 2 hours. The volume and surface areas of mesopores (2-50 nm) and BET surface areas of the samples were determined by N2 gas adsorption technique at -195.6oC. The pore volume and the area of the micropores with diameters less than 2 nm were determined by CO2 adsorption measurements at 0oC by the application of Dubinin Radushkevich equation. N2 (BET) surface areas of the hazelnut shell and hazelnut husk based activated carbons were in the range of 242-596 m2/g and 705-1565 m2/g, respectively. CO2 (D-R) surface areas of the hazelnut shell and hazelnut husk based activated carbons were in the range of 433-576 m2/g and 376-724 m2/g, respectively. The highest BET surface area was obtained as 596 m2/g among hazelnut shell based samples (HS 60.4 / shell impregnated with 60 wt.% H3PO4, carbonized at 400 &ordm / C) and as 1565 m2/g among hazelnut husk based samples (HH 40.4 / husk impregnated with 40 wt.% H3PO4, carbonized at 400 &ordm / C). Hazelnut shell based activated carbons were mainly microporous while hazelnut husk based ones were mesoporous.
263

Effect Of Tih2 Particle Size On Foaming Of Aluminium

Kubilay, Ceylan 01 December 2005 (has links) (PDF)
ABSTRACT A study is carried out on the production of aluminum foams via powder processing. The study deals mainly with the effect of TiH2 particle size on the process of foaming. Mainly two TiH2 particle sizes were used / namely 27,5 &amp / #61549 / m and 8,5 &amp / #61549 / m. Foaming experiments were carried out at temperatures between 675oC &ndash / 840oC. The viscosity of the system is adjusted by controlled addition of Al2O3. The study shows that choice of foaming agent size is influential in the foaming process. With the use of fine foaming agent, temperatures in excess of 800oC would be required for successful foaming. The study further showed that the relation between foaming and viscosity was also dependent on the particle size. Viscosity of 2.3 mPa.s was found to be a limiting value for successful foaming with fine foaming agent. This value appears to increase with increasing particle size. An analysis is presented with regard to temperature dependence of foaming which takes into account the effect of particle size.
264

Wave-forced porewater mixing and nutrient flux in a coral reef framework

Haberstroh, Paul R January 1994 (has links)
Thesis (Ph.D.)--University of Hawaii at Manoa, 1994. / Includes bibliographical references (leaves 235-249). / Microfiche. / xx, 249 leaves, bound ill., maps 29 cm
265

Assembly and transport of messenger and ribosomal RNP particles in the dipteran Chironomus tentans /

Soop, Teresa, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2003. / Härtill 4 uppsatser.
266

An improved dual-permeability model of solute transport in structured soils : model development and parameter identification in laboratory and field experiments /

Larsbo, Mats, January 2005 (has links) (PDF)
Diss. (sammanfattning). Uppsala : Sveriges lantbruksuniv. / Härtill 3 uppsatser.
267

The abiotic transformation of nitroaromatic pesticides by Fe(II) and dissolved organic matter

Hakala, Jacqueline Alexandra, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 119-127).
268

In situ chemical characterization of cold seep fluid in Monterey Bay, California

Ferioli, Laurie Jean. January 1997 (has links)
Thesis (M.S.)--San Jose State University, 1997. / Includes abstract. Includes bibliographical references (leaves 112-122).
269

Direct measurement of pore fluid suction in gold mine tailings

Van Heerden, Jacobus Hendrik Francois. January 2003 (has links)
Thesis (M. Eng.(Geotechnical Engineering))--University of Pretoria, 2003. / Includes bibliographical references.
270

Influência do tamanho da amostra na determinação da curva de retenção da água no solo / Sample size effect on the determination of the soil water retention curve

Maria Laiane do Nascimento Silva 25 May 2016 (has links)
A curva de retenção da água no solo é um dos principais instrumentos para avaliar a qualidade física dos solos e possibilitar seu manejo adequado. Por meio da Teoria da Capilaridade vários equipamentos foram desenvolvidos para determinar a intensidade com que a água está retida ao solo, porém, pouco se tem dado atenção para verificar se os pressupostos para o real funcionamento da teoria estão sendo atendidos. Um aspecto refere-se ao tamanho da amostra utilizada para determinar a curva de retenção, de modo que haja continuidade dos feixes capilares na amostra e placa porosa. Desta forma, este trabalho propõe avaliar diferentes tamanhos de amostra indeformada para a determinação da curva de retenção. Para isso, coletaram-se amostras em anéis volumétricos cilíndricos de três tamanhos (altura) diferentes (T1 - 0,075 m; T2 - 0,05 m; T3 - 0,025 m;) e mesmo diâmetro interno (0,07 m), dos horizontes diagnósticos de um Latossolo e um Nitossolo em áreas experimentais da Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP), Piracicaba - SP. Realizou-se a caracterização física destes solos, por meio da análise granulométrica, densidade do solo, densidade de partículas, porosidade total e teor de carbono orgânico. As curvas foram determinadas para cada tamanho de amostra, utilizando-se o Funil de Haines, para as tensões 0,5, 1, 4, 6 e 10 kPa, e a Câmara de Pressão de Richards para 33, 100 e 500 kPa. As curvas de retenção foram ajustadas pelo modelo utilizado por van Genuchten. Estimadas as curvas, avaliou-se a distribuição de poros do solo das amostras, determinando-se a curva de frequência acumulada de poros em função do logaritmo do raio e, depois pela diferenciação das equações de ajuste das curvas de retenção, a curva diferencial de frequência acumulada de poros. Os resultados mostram que o Latossolo, por ter textura arenosa no horizonte estudado, não apresentou diferença significativa nas curvas de retenção para os tamanhos das amostras estudadas. Verificou-se pouca modificação na distribuição dos poros deste solo, que possui teor elevado das frações areia fina e muito fina, e desenvolveram papel importante para a retenção de água. O Nitossolo, por sua vez, apresentou diferença significativa da curva obtida pela amostra de menor tamanho (T3), havendo maior retenção de água com a diminuição do tamanho da amostra. Devido a sua textura muito argilosa, o arranjo estrutural deste solo foi diferenciado ao se utilizar as amostras maiores, com provável interrupção e descontinuidade dos feixes capilares. Consequentemente, houve também alteração na distribuição dos poros, com redução dos mesoporos e aumento dos microporos. Desta forma, pode-se concluir que o tamanho da amostra influenciou a curva de retenção da água devido à complexidade estrutural do solo, que provavelmente é diferente nas amostras maiores por causa da continuidade dos feixes capilares, principalmente no Nitossolo. Em outras palavras, quanto menor o tamanho da amostra há menor diferenciação no arranjo de poros, ou seja, maior proximidade da real condição do solo e, assim, uma interpretação da retenção de água \"mais correta\" por meio da Teoria da Capilaridade. / The soil water retention curve is one of main tools to assess the physical quality of the soil and to make possible its adequate management. By means of the Capillary Theory, many instruments have been developed to determine the water retention forces in soil, but, little attention has been given to check whether the assumptions for the application of the theory are being attended. One aspect relates to the sample size used to determine the retention curve, so that there is capillary continuity of the sample and porous plate. Thus, this study aimed to evaluate different sizes of undisturbed cylindrical samples for determination of the retention curve. The samples were collected from diagnostic horizons of Latosol and a Nitosol, in experimental areas of the Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP), Piracicaba - SP. Three volumetric rings with three different heights (T1 - 0,075 m; T2 - 0,05 m; T3 - 0,025 m;), were used the diameter of the rings were the same for the three sizes (0,07 m). The physical characterization soils were made by the granulometric analysis, bulk density, particle density, porosity and organic carbon. The curves were determined for each sample size, using the Haine\'s funnel, for tensions 0.5, 1, 4, 6 and 10 kPa, and Richard\'s pressure chamber for 33, 100 and 500 kPa. The pore size distribution of the soil was evoluated first by determining the cumulative frequency curve of pore radius, and then, by differentiating fitling equation of fluis curve to obtain a differential curve of pore cumulative frequency. The retention curves were fitted by the model used by Van Genuchtem. The results showed that in the Latosol there was no significant difference in retention curves for the sizes of the samples studied. There was little change in pore distribution of the fluis soil with high content of fractions fine and very fine sand, that developes significant role in soil water retention. The Nitosol exhibited significant difference of the curve obtained by the smallest size sample (T3), with greater water retention with the decreasing of the sample size. Because of its very clayey texture, the structural arrangement of this soil was different when larger samples were used, with probable interruption and discontinuity of capillaries. Consequently there was also a change in the pore distribution, with reduction of mesopores and an increase of micropores. Thus, itean be conclude that the sample size influenced the soil water retention curve due to the structural complexity of the soil that probably is different in the bigger sample because of the continuity of the capillary budles fluit was more affected in the Nitosol. In other words, the smaller the sample size, the smaller the difference in the arrangement of pores, that is, more closeness of the actual condition of the soil and so a \"more correct\" interpretation of soil water retention by capillary theory.

Page generated in 0.046 seconds