Spelling suggestions: "subject:"more plugging"" "subject:"more slugging""
1 |
Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and ModelingTawalbeh, Muhammad 17 December 2013 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m.
The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface.
Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1.
A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
|
2 |
Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and ModelingTawalbeh, Muhammad January 2014 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m.
The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface.
Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1.
A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
|
3 |
Synthesis and New Characterization Method of Silicalite-1 Membranes for Gas SeparationAl-Akwaa, Shaaima 17 December 2020 (has links)
Zeolite membranes have great potential in gas separation applications because of
their unique selective properties. The main challenge is in synthesizing defect-free zeolite
membranes. In this study, we synthesized silicalite-1 zeolite membranes on ceramic
supports composed of Al2O3 and TiO2 using the pore-plugging method. We investigated
the effect of the fill-level in the autoclave during the synthesis on the membrane
performance. In particular, we were interested in determining the conditions at which the
defects' contribution to the total transport is minimized. We adopted and further developed
the approach proposed by Carter (2019) to quantify the permeance contribution through
defects. Comparing the membrane performance before and after calcination, we proposed
several modifications to the original analysis of Carter (2019). Knowing the defect
transport contribution, we determined the corrected diffusivity, an intrinsic property of
zeolite crystals at a given temperature, of several adsorbed gases on silicalite-1 crystals.
The defect's contribution decreased as the autoclave fill-level increased from 94 to
98%. A further increase in the autoclave fill-level introduced more defects and caused the
autoclave lid to rupture. Despite the differences in the membranes' performance arising
from the autoclave fill-level, the corrected diffusivities of CO2, CH4, and N2 in silicalite-1
showed minimal variation from membrane to membrane. This proves the validity of the
proposed characterization method. Moreover, the reported corrected diffusivities are
comparable to the literature's values, found using other characterization methods.
However, none of the previously used methods is as simple and straightforward as the one
we further developed in this study.
|
Page generated in 0.045 seconds