• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of Multicomponent Diffusion and Swelling in Protein Gels

Lu, Kang January 2011 (has links)
Some protein gels are products of the dairy industry and some are used as pH-sensitive gels for the controlled delivery of biologically active substances. To understand the dynamics of drug delivery it is very important to establish a mathematical model of protein gel swelling. This required the identification and integration of theory and equations from a wide range of topics. The aim of this research was to develop a mathematical model of transport in polyelectrolyte gels (using the example of β-lactoglobulin protein gels). A complete mathematical model of protein gel swelling was established. The swelling process of protein gels in this thesis involved multicomponent diffusion, chemical ionisation and mechanical deformation. Diffusion of electrolyte solutions through protein gels was modelled using the generalised Maxwell-Stefan (GMS) equation. The swelling pressure as a driving force in the GMS equation was described by rubber elasticity theory. Thermodynamic factors including the charged protein effect were considered in the GMS equation. The model included pH as a variable so it could be applied to both acidic and alkaline cases. The model yielded a set of partial differential equations with algebraic equations for which COMSOL was selected as the simulation software. Although it was found that COMSOL could not always solve the model equations, numerical solutions were obtained for several cases. The model predicted that the equilibrium swelling degree of the gel decreased with high concentration of salts in the bulk solution. The model also predicted that the non-ideal effects were not always small and they depended on the activity coefficients of the species. Satisfactory solutions could not be obtained for all cases using commercial software such as COMSOL Multiphysics. It was shown that COMSOL did not conserve mass but conservativeness was critical in this application because pH and hence the net protein charge is very sensitive to the mass of hydrogen present. In the future, research should be carried out to improve the pressure model in the GMS equation. Theoretical research on Manning condensation theory should be done to modify Manning’s model for more robust prediction of activities of water and ions with protein, and experiments should be done to validate the performance of the modified Manning model. Efforts should be made to write the programming code for a finite volume method to solve the system in three dimensions.
2

The Application of Generalised Maxwell-Stefan Equations to Protein Gels

Lu, Kang January 2007 (has links)
The removal of milk fouling deposits often requires the diffusion of electrolyte solutions such as sodium hydroxide through a gel. Very often more than one single anion and one single cation are involved and thus the modelling of such diffusion requires a multicomponent description. Diffusion of electrolyte solutions through gels can be modelled using the Maxwell-Stefan equation. The driving forces for diffusion are the chemical potential gradients of ionic species and the diffusion potential, i.e., the electrostatic potential induced by diffusion of the ions. A model based on the Maxwell-Stefan equation was applied to electrolyte solutions and electrolyte solutions with a gel. When modelling the diffusion of electrolyte solutions, the resulting equations were found to be a partial differential algebraic equation system with a differentiation index of two. The identification of this characteristic of the system enabled a solution method using the method of lines to be developed. When modelling the diffusion of electrolyte solutions through a gel an explicit expression for diffusion potential was developed and hence the diffusion equations were solved. Numerical solutions were presented for a number of case studies and comparisons were made with solutions from literature and between different electrolyte systems. It was found that the results of diffusion of electrolytes were in good agreement with those of experiments and literature. In the case of diffusion of electrolytes through a gel, swelling of the gel was predicted. The model can be improved by adding thermodynamic factors and can be easily extended to multiple ion systems.
3

Diffusion of large molecules in porous structures

Vonk, Pieter. January 2006 (has links)
Proefschrift Rijksuniversiteit Groningen. / Met lit.opg. - Met samenvatting in het Nederlands.
4

Adsorption multi-composant dans les zéolithes. Caractérisation par méthode cyclique de la co-diffusion d'isomères mono- et di-branchés de l'hexane sur silicalite en présence d'un composé à cinétique lente / Multi-component adsorption in zeolites : characterization by a cyclic method of the co-diffusion of mono- and di-branched hexane isomers on silicalite, including a slow-diffusing species

Lettat, Abdelkader 05 December 2008 (has links)
L’objectif de cette thèse est de développer une méthode expérimentale permettant de mesurer simultanément des coefficients de co-diffusion dans les zéolithes, pour des mélanges de paraffines en C6 mono et di-branchées, dont les cinétiques de diffusion sont très différentes. Les espèces sont le 2- et le 3-methyl-pentane (2MP et 3MP) et le 2-2- et le 2-3-dimethyl-butane (22DMB et 23DMB) et l'adsorbant est une silicalite. Cette méthode est basée sur la réponse en sortie d’un lit fixe d’adsorbant à une variation cyclique de la composition à son entrée. La conception d’un modèle faisant intervenir des paramètres cinétiques et thermodynamiques a également être effectuée afin de simuler les courbes de perçages des différents constituants en mélange et sur plusieurs cycles. Les conditions expérimentales sont proches des conditions industrielles, à savoir en phase liquide et à fort taux de remplissage de l’adsorbant (185°C et 35 bars) L’écriture d’un modèle de diffusion, basé sur l’équation de Maxwell-Stefan appliquée au "Dusty Gas Model", dans ces conditions de fonctionnement, implique d’introduire des grandeurs volumiques qui permettent de redéfinir les contraintes liées à la saturation de l'adsorbant. De plus, tout en conservant la simplicité du modèle "Single File Diffusion" (pas de contre-diffusion microporeuse), nous avons montré que la prise en compte d’un flux volumique relatif associé au solide permet de conserver l’indépendance des coefficients de diffusion dans le cristal. Les simulations des courbes de perçage – sur un seul cycle pour les molécules rapides et sur plusieurs cycles pour les molécules lentes – indiquent que les coefficients de diffusion des différents isomères suivent l'ordre suivant : D3MP ˜ D2MP > D23DMB > D22DMB, avec un écart de trois ordres de grandeurs entre le 3MP et le 22DMB, ce qui laisse supposer qu'un procédé de séparation basé sur une sélectivité diffusionnelle peut être envisagé. Cependant, les tests de perçage en condition cyclique permettant de caractériser de manière plus précise le système, il a été possible de mettre en évidence une très lente accumulation du 22DMB au cours des cycles sous certaines conditions opératoires, phénomène qui peut s'avérer indétectable sur un faible nombre de cycles et/ou sur le profils de concentration des autres espèces. Ce phénomène a pour conséquence de diminuer les performances de l'adsorbant, aussi bien d'un point de vue capacitif que d'un point de vue sélectif / The aim of this work is to develop a new experimental method in order to determine simultaneously co-diffusion coefficients in zeolites for mixtures of single- and di-branched C6 paraffins, with totally different diffusion kinetics. The species are 2- and 3-methyl-pentane (2MP and 3MP) and 2-2- and 2-3-dimethyl-butane (22DMB and 23DMB) and the adsorbent is a silicalite. This method is based on the output measurement of an adsorbent column subjected to cyclic variations of its input concentration. The analysis of the mixture experimental breakthrough curves, on several cycles, is carried out using a mathematical model, based on Maxwell-Stefan theory of multi-component diffusion, allowing an estimation of thermodynamic and kinetic parameters. The experimental conditions are close to industrial constraints, i.e. at very high adsorption loading, and in the liquid phase (185°C and 35 bars). This requires to develop a modified Maxwell-Stefan diffusion model, applied to the "Dusty Gas Model", including volume constraints in the crystal which implies to redefine the adsorbent saturation. Moreover, while preserving the simplicity of the "Single File Diffusion" model (no counter-diffusion), a relative volumetric flow of the solid is taken into account, allowing to ensure the independence of the diffusion coefficient of each component in the adsorbent. The Maxwell-Stefan diffusion coefficients for the different isomers, obtained from breakthrough curves simulations – on one cycle for fast diffusing species and several cycles for slow molecules – are in the sequence : D3MP ˜ D2MP, > D23DMB > D22DMB, with a difference of three orders of magnitude between 3MP and 22DMB. This implies that a separation process based on kinetic selectivity can be considered. The cyclic breakthrough experiments, allowing a better characterization of the system, highlight a very slow accumulation of the 22DMB isomer during cycles for specific operating conditions, which may be undetectable on a small number of cycles and on the profiles of the other components.. This phenomenon involves a decrease of the adsorbent performances, in terms of capacity as well as selectivity
5

Σύνθεση μεμβρανών φωγιασίτη σε υποστρώματα α-Al2O3 και μελέτη της χρήσης αυτών σε διαχωρισμούς αερίων μιγμάτων

Γιαννακόπουλος, Ιωάννης 30 June 2008 (has links)
Οι ζεόλιθοι είναι κρυσταλλικά αργιλοπυριτικά υλικά με πόρους μοριακών διαστάσεων και για το λόγο αυτό συχνά καλούνται και ως μοριακά κόσκινα. Χαρακτηρίζονται από την ικανότητα ρόφησης αερίων και ατμών, ανταλλαγής των κατιόντων της δομής τους, καθώς και κατάλυσης σημαντικού αριθμού χημικών αντιδράσεων. Λόγω των ιδιαίτερων φυσικοχημικών ιδιοτήτων τους, οι ζεόλιθοι αποτελούν ιδανικά υλικά για το διαχωρισμό μορίων με διαφορετικό σχήμα, μέγεθος ή πολικότητα γι’αυτό την τελευταία δεκαετία μέρος του ερευνητικού ενδιαφέροντος έχει επικεντρωθεί στην ανάπτυξη πολυκρυσταλλικών μεμβρανών από ζεόλιθους με σκοπό το διαχωρισμό αερίων και υγρών μιγμάτων. Στην παρούσα Διατριβή μελετήθηκε η κρυστάλλωση μεμβρανών φωγιασίτη πάνω σε πορώδη υποστρώματα από α-Al2O3 με επίπεδη και κυλινδρική γεωμετρία συναρτήσει διαφόρων παραμέτρων σύνθεσης όπως ήταν η σύσταση, η θερμοκρασία, ο χρόνος και η γήρανση των αιωρημάτων σύνθεσης των μεμβρανών Συνολικά εξετάστηκαν πέντε διαφορετικές συστάσεις. Η σύσταση 4.17Na2O : 1.0Al2O3 : 10TEA (τριαιθανολαμίνη) : 1.87SiO2 : 460H2O οδήγησε στην ανάπτυξη μεμβρανών φωγιασίτη με λιγότερες ατέλειες και για αυτό μελετήθηκε περισσότερο. Η ικανότητα των μεμβρανών να διαχωρίζουν μίγματα CO2 / H2, CO2 / N2, CO2 / CH4, CO2 / H2 / N2 / CH4, C3H6 / C3H8, C3H6 / N2, C3H8 / N2 και C3H6 / C3H8 / N2 εξετάστηκε συναρτήσει της θερμοκρασίας, της σύστασης και της πίεσης της τροφοδοσίας καθώς και της παρουσίας ή μη υγρασίας στο ρεύμα της τροφοδοσίας. Τα πειράματα διαπερατότητας απέδειξαν, ότι ευνοείται η εκλεκτική μεταφορά κυρίως του CO2 και του C3H6 μέσα από τις μεμβράνες. Η εκλεκτικότητα μπορεί να αποδοθεί στην ισχυρή αλληλεπίδραση των μορίων αυτών με τα κατιόντα Na+ που περιέχονται στη δομή του φωγιασίτη. Τέλος, μελετήθηκαν οι μηχανισμοί μεταφοράς μάζας των μιγμάτων CO2 / H2 και CO2 / H2 / N2 / CH4 με τη χρήση της θεωρίας Stefan-Maxwell. Επιπρόσθετα εξετάστηκαν διάφορες περιπτώσεις αργού σταδίου (διάχυση και εκρόφηση) καθώς και συνδυασμοί διαφορετικών μηχανισμών διάχυσης (επιφανειακή διάχυση και ενεργοποιημένη διάχυση αερίων). Οι συντελεστές διάχυσης υπολογίστηκαν από το συνδυασμό των πειραματικών δεδομένων ρόφησης και διαπερατότητας των καθαρών συστατικών. Η ανάλυση που πραγματοποιήθηκε οδήγησε στο συμπέρασμα ότι η μεταφορά των μιγμάτων μέσα από τις μεμβράνες μπορεί να προβλεφθεί κυρίως από το μηχανισμό της επιφανειακής διάχυσης. / Zeolites are crystalline aluminosilicate materials. They are frequently called molecular sieves because they have pores of molecular dimensions. They are able to adsorb gases or vapors, to exchange framework cations and to catalyze a large number of chemical reactions. Due to their physicochemical properties they are ideal materials for the discrimination of molecules based on their shape, size or polarity. The last decade part of the research attention has been focused on the synthesis of polycrystalline zeolite membranes for the separation of gas and vapor mixtures. In the present thesis the crystallization of faujasite membranes on porous flat or tubular α-Al2O3 substrates was studied as a function of several synthesis parameters such as composition, temperature, time and aging of sol mixtures. Five different compositions were examined. Membranes synthesized using sols with composition 4.17Na2O : 1.0Al2O3 : 10TEA (triethanolamine) : 1.87SiO2 : 460H2O, had the best separation performance. The ability of the membranes to separate CO2 / H2, CO2 / N2, CO2 / CH4, CO2 / H2 / N2 / CH4, C3H6 / C3H8, C3H6 / N2, C3H8 / N2 and C3H6 / C3H8 / N2 mixtures was examined as a function of temperature, feed mixture composition, total feed pressure and the presence or not of humidity in the feed side. In all cases the membranes were either CO2 or C3H6 selective. The separation ability can be attributed to the strong interaction between those molecules with the Na+ cations of the faujasite framework. The transport of CO2, H2, N2 and CH4 through the membranes was modeled using the Maxwell-Stefan theory. Two different cases of rate limiting step (diffusion and desorption) as well as several combinations of different diffusion mechanisms (surface diffusion and activated gaseous diffusion) were considered. The diffusion coefficients were calculated using the single-component permeation and adsorption data. It has been possible to predict the multicomponent permeation fluxes when surface diffusion was assumed the transport mechanism of all species.
6

Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and Modeling

Tawalbeh, Muhammad 17 December 2013 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface. Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1. A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
7

Pervaporation of alcohol/water mixtures using ultra-thin zeolite membranes:membrane performance and modeling

Leppäjärvi, T. (Tiina) 16 June 2015 (has links)
Abstract The production of liquid transportation fuels such as bioethanol and more recently also biobutanol from renewable resources has received considerable attention. In the production of bio-based alcohols, the separation steps are expensive as the mixtures to be separated are dilute. As an energy-efficient separation technology, pervaporation is considered to be a potential process in biofuel purification. One of the main constraints in the commercialization of pervaporation has been low membrane fluxes, and the consequent high costs due to the high membrane area needed. In order to obtain high fluxes, the membranes should be as thin as possible. In this thesis, the performance of ultra-thin zeolite membranes in pervaporation was investigated. Binary ethanol/water and n-butanol/water mixtures were studied using both hydrophobic and hydrophilic zeolite membranes for alcohol concentration, as well as dehydration. The development of pervaporation membranes and processes has been mainly empirical. Process modeling, however, is an indispensable tool in process design. In this work, the pervaporation performance of the studied membranes was evaluated on the basis of experimental results in combination with mathematical modeling. Due to the low film thickness of the studied membranes, the fluxes were generally higher than reported earlier. Nevertheless, the evaluation in this work showed that the pervaporation performance of the ultra-thin membranes decreased due to flux limitation by membrane support. In this work, pervaporation was modeled by applying both a semi-empirical and a detailed Maxwell-Stefan based mass transfer model. The latter model considers explicitly both adsorption and diffusion, i.e. the phenomena involved in separation by pervaporation. The description of the support behavior was included in the models. Maxwell-Stefan formalism was applied in unary pervaporation for the determination of diffusivities in zeolite membranes. The models performed well within the range of experimental data. Additionally, a practical modeling approach was developed in this work to predict the temperature dependency of adsorption on zeolites. The developed approach can be utilized, e.g., in pervaporation modeling. Thus, this thesis provides knowledge of using ultra-thin zeolite membranes in the pervaporation of alcohol/water mixtures, and offers tools for pervaporation modeling. / Tiivistelmä Kiinnostus uusiutuvista raaka-aineista valmistettavia liikennepolttoaineita, kuten bioetanolia ja -butanolia, kohtaan lisääntyy koko ajan. Biopohjaisten alkoholien tuotannossa etenkin erotusvaiheet ovat kalliita, koska erotettavat liuokset ovat laimeita. Pervaporaatio on energiatehokas kalvoerotusmenetelmä ja sen vuoksi potentiaalinen osaprosessi biopolttoaineiden tuotantoon. Pervaporaation kaupallistamisen merkittävimpiä rajoitteita ovat olleet alhaiset ainevuot, jotka johtavat suureen kalvopinta-alan tarpeeseen ja näin ollen korkeisiin kustannuksiin. Korkean ainevuon saavuttamiseksi kalvojen tulisi olla mahdollisimman ohuita. Tässä väitöstyössä tutkittiin hyvin ohuiden zeoliittimembraanien suorituskykyä pervaporaatiossa. Kohteena olivat binääriset etanoli/vesi- ja n-butanoli/vesiseokset, joista väkevöitiin alkoholeja tai poistettiin vettä hydrofobisia ja hydrofiilisiä zeoliittimembraaneja käyttäen. Pervaporaatiossa käytettävien kalvojen ja pervaporaatiota hyödyntävien prosessien kehitystyö on ollut pääasiassa kokeellista. Prosessimallinnus on kuitenkin tärkeä työkalu prosessisuunnittelussa. Tässä työssä membraanien suorituskykyä pervaporaatiossa arvioitiin sekä kokeellisesti että mallinnuksen keinoin. Käytettyjen kalvojen ohuuden ansiosta tässä työssä saavutetut ainevuot olivat yleisesti ottaen korkeampia kuin aiemmin raportoiduilla membraaneilla. Ohuilla kalvoilla tukimateriaalin aiheuttama aineensiirron vastus oli kuitenkin merkittävä, alentaen membraanien suorituskykyä. Tässä työssä pervaporaatiota mallinnettiin käyttäen sekä puoliempiiristä että yksityiskohtaisempaa Maxwell-Stefan -pohjaista mallia. Jälkimmäisessä mallissa adsorptio ja diffuusio, eli ilmiöt joihin erotus pervaporaatiossa perustuu, otetaan eksplisiittisesti huomioon. Myös tukimateriaalin vaikutukset huomioitiin käytetyissä malleissa. Maxwell-Stefan -mallinnusta käytettiin puhtaiden komponenttien pervaporaatiossa zeoliittimembraanin diffuusiokertoimien määrittämiseksi. Käytettyjen mallien suorituskyky kokeellisella alueella oli hyvä. Tässä työssä kehitettiin lisäksi helppokäyttöinen menetelmä aineiden adsorptiokäyttäytymisen ennustamiseen zeoliiteissa eri lämpötiloissa. Kehitettyä menetelmää voidaan hyödyntää esimerkiksi pervaporaation mallinnuksessa. Kokonaisuudessaan väitöstyöstä saadaan tietoa ultraohuiden membraanien käytöstä pervaporaatiossa sekä työkaluja pervaporaation mallinnukseen.
8

Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and Modeling

Tawalbeh, Muhammad January 2014 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface. Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1. A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
9

Separation process modelling:highlighting the predictive capabilities of the models and the robustness of the solving strategies

Kangas, J. (Jani) 04 March 2014 (has links)
Abstract The aim of this work was to formulate separation process models with both predictive capabilities and robust solution strategies. Although all separation process models should have predictive capabilities, the current literature still has multiple applications in which predictive models having the combination of a clear phenomenon base and robust solving strategy are not available. The separation process models investigated in this work were liquid-liquid phase separation and membrane separation models. The robust solving of a liquid-liquid phase separation model typically demands the solution of a phase stability analysis problem. In addition, predicting the liquid-liquid phase compositions reliably depends on robust phase stability analysis. A phase stability analysis problem has multiple feasible solutions, all of which have to be sought to ensure both the robust solving of the model and predictive process model. Finding all the solutions with a local solving method is difficult and generally inexact. Therefore, the modified bounded homotopy methods, a global solving method, were further developed to solve the problem robustly. Robust solving demanded the application of both variables and homotopy parameter bounding features and the usage of the trivial solution in the solving strategy. This was shown in multiple liquid-liquid equilibrium cases. In the context of membrane separation models, predictive capabilities are achieved with the application of a Maxwell-Stefan based model. With the Maxwell-Stefan approach, multicomponent separation can be predicted based on pure component permeation data alone. On the other hand, the solving of the model demands a robust solving strategy with application-dependent knowledge. These issues were illustrated in the separation of a H2/CO2 mixture with a high-silica MFI zeolite membrane at high pressure and low temperature. Similarly, the prediction of mixture adsorption based on pure component adsorption data alone was successfully demonstrated. In the context of membrane separation models, predictive capabilities are achieved with the application of a Maxwell-Stefan based model. With the Maxwell-Stefan approach, multicomponent separation can be predicted based on pure component permeation data alone. On the other hand, the solving of the model demands a robust solving strategy with application-dependent knowledge. These issues were illustrated in the separation of a H2/CO2 mixture with a high-silica MFI zeolite membrane at high pressure and low temperature. Similarly, the prediction of mixture adsorption based on pure component adsorption data alone was successfully demonstrated. / Tiivistelmä Työn tavoitteena oli muotoilla prosessin käyttäytymisen ennustamiseen kykeneviä erotusprosessimalleja ja niiden ratkaisuun käytettäviä luotettavia strategioita. Vaikka kaikkien erotusprosessimallien tulisi olla ennustavia, on tällä hetkellä useita kohteita, joissa prosessin käyttäytymistä ei voida ennustaa siten, että käytettävissä olisi sekä ilmiöpohjainen malli että ratkaisuun soveltuva luotettava strategia. Tässä työssä erotusprosessimalleista kohteina tarkasteltiin neste-neste-erotuksen ja membraanierotuksen kuvaukseen käytettäviä malleja. Neste-neste-erotusmallien luotettava ratkaisu vaatii yleensä faasistabiilisuusongelman ratkaisua. Lisäksi faasien koostumusten luotettava ennustaminen pohjautuu faasistabiilisuusanalyysiin. Faasistabiilisuusongelmalla on useita mahdollisia ratkaisuja, jotka kaikki tulee löytää, jotta voitaisiin varmistaa luotettava mallin ratkaisu sekä prosessimallin ennustuskyvyn säilyminen. Kaikkien ratkaisujen löytäminen on sekä vaikeaa että epätarkkaa paikallisesti konvergoituvilla ratkaisumenetelmillä. Tämän vuoksi globaaleihin ratkaisumenetelmiin kuuluvia modifioituja rajoitettuja homotopiamenetelmiä kehitettiin edelleen, jotta faasistabiilisuusongelma saataisiin ratkaistua luotettavasti. Ratkaisun luotettavuus vaati sekä muuttujien että homotopiaparametrin rajoittamista ja ongelman triviaalin ratkaisun käyttöä ratkaisustrategiassa. Tämä käyttäytyminen todennettiin useissa neste-nestetasa-painoa kuvaavissa esimerkeissä. Membraanierotusta tarkasteltaessa ennustava malli voidaan muotoilla käyttämällä Maxwell-Stefan pohjaista mallia. Maxwell-Stefan lähestymistavalla voidaan ennustaa monikomponenttiseosten erotusta perustuen puhtaiden komponenttien membraanin läpäisystä saatuun mittausaineistoon. Toisaalta mallin ratkaisu vaatii luotettavan ratkaisustrategian, jossa hyötykäytetään kohteesta riippuvaa tietoa. Näitä kysymyksiä havainnollistettiin H2/CO2 seoksen erotuksessa MFI-zeoliitti-membraanilla korkeassa paineessa. Samoin seosten adsorboitumiskäyttäytymistä ennustettiin onnistuneesti pelkästään puhtaiden komponenttien adsorptiodatan pohjalta. Kokonaisuutena voidaan todeta, että tarkasteltujen erotusprosessimallien ennustavuutta voidaan parantaa yhdistämällä malli, jolla on selkeä ilmiöpohja ja luotettava ratkaisustrategia. Lisäksi mallien käytettävyys erotusprosessien suunnittelussa on parantunut työn tulosten pohjalta.
10

Modélisation de l'absorption réactive multiconstituant : application au traitement des gaz acides par des solvants aux alcanolamines / Modelling of multicomponent reactive absorption : application to the acid gases treatment by alkanolamine solvents

Ahmadi, Aras 30 September 2011 (has links)
Les gaz issus de la combustion des énergies fossiles dans les centrales électriques contiennent une grande variété de polluants tels que les gaz-acides et ne peuvent être rejetés directement dans l'atmosphère. Ces polluants gazeux doivent être traités par des méthodes de captage en post combustion dans des colonnes d'absorption utilisant des solvants chimiques. L'objectif est donc de concevoir une unité d'élimination sélective des gaz-acides tels que CO2, H2S et COS en utilisant des solvants de la famille des alcanolamines. Cette thèse développe dans un premier temps, un modèle de non-équilibre, adapté aux systèmes multiconstituants électrolytiques et réactifs, pour la représentation des colonnes d'absorption réactive. Le modèle comporte des modules pour représenter la thermodynamique en espèces vraies (espèces ioniques et moléculaires), le transfert simultané de masse et de chaleur, et les réactions chimiques. Les équations généralisées de Maxwell-Stefan sont utilisées pour quantifier les interactions multiconstituants lors de la diffusion. Le schéma réactionnel est intégralement pris en compte dans la phase liquide, et les réactions chimiques peuvent être cinétiquement contrôlées ou à l'équilibre chimique instantané. La séparation réactive en régime permanent est ainsi simulée avec une description rigoureuse des phénomènes de réaction-diffusion dans les films diffusionnels. Dans un deuxième temps, une installation pilote de captage du CO2 par une solution aqueuse de diéthanolamine est mise en fluvre pour la validation expérimentale du modèle. La diéthanolamine a une forte réactivité vis-à-vis du CO2; ceci engendre un profil important de concentration du soluté dans la colonne. Le pilote est dédié à la validation de modèle, il est donc équipé de plusieurs unités d'échantillonnage gaz et liquide à différentes hauteurs de garnissage. Les profils longitudinaux de la concentration du CO2 en gaz et en liquide, de l'humidité absolue et de la température liquide peuvent être établis expérimentalement et être comparés avec ceux provenant de la simulation. L'outil de simulation validé devient alors un outil de prédiction de l'efficacité des unités réelles de captage par l'absorption réactive. / The exhaust gases coming from the combustion of fossil fuels in power plants contain a wide variety of pollutants such as acid gases and can not be discharged directly into the atmosphere. These gaseous pollutants must be treated by postcombustion capture methods in absorption columns using chemical solvents. The objective is then to design a selective removal unit of acid-gases such as CO2, H2S and COS by using solvents of the alkanolamine family. This thesis develops as the first step, a non-equilibrium model, adapted to multicomponent electrolytic and reactive systems, for the representation of reactive absorption columns. The model includes modules to represent the thermodynamics on the basis of true species (ionic and molecular species), the simultaneous heat and mass transfer, and the chemical reactions. The generalized equations of Maxwell-Stefan are used to take into account the multicomponent interactions during diffusion. The reaction scheme is fully included in the liquid phase, and the chemical reactions can be kinetically controlled or at instantaneous equilibrium. The reactive separation at steady-state conditions is then simulated with a rigorous description of the reaction-diffusion phenomena in diffusional films. In the second step, a pilot plant of CO2 capture with an aqueous solution of diethanolamine is implemented for experimental validation of the model. Diethanolamine has high reactivity with respect to CO2; this generates an important concentration profile of solute in the column. The pilot plant is dedicated to model validation; it is equipped with several gas and liquid sampling units at different heights of packing. The longitudinal profiles of the gas and liquid CO2 concentration, the absolute humidity and the liquid temperature can be established experimentally and compared with those from the simulation. The validated simulation tool then becomes a tool to predict the effectiveness of real capture units by reactive absorption.

Page generated in 0.4303 seconds