• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 127
  • 116
  • 49
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 648
  • 648
  • 186
  • 169
  • 116
  • 110
  • 106
  • 86
  • 84
  • 83
  • 81
  • 80
  • 63
  • 63
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

An Experiment on Integrated Thermal Management Using Metallic Foam

Geiger, Derek M 01 May 2009 (has links) (PDF)
This report details an approach to using metal foam heat exchangers inside an integrated thermal management system on a variable cycle engine. The propulsion system of interest is a variable cycle engine with an auxiliary, variable flow rate fan. The feasibility of utilizing an open-celled metallic foam heat exchanger in the ducting between the constant and variable-fans on this variable cycle engine to cool the avionics was explored using an experimental approach. Two heat exchangers, 6.3 inch width by 6.3 inch length by 0.5 inch thickness, were constructed from 20 and 40 pores per inch (PPI) metal foam and tested. Both were constructed using 6061-T6 aluminum open-cell metal foam with a relative density of 8% and brazed using 4047 aluminum braze to 0.02 inch thick sheet metal made of 6061-T6 aluminum. Both models were subjected to internal forced convection using heated air with flow rates of 4, 8, 12, 16, and 20 standard cubic feet per minute (SCFM). They were also subjected to external forced convection using blowers to supply cooling air to simulate the variable cycle engine’s fans. One duct was supplied with a constant 34 ft/s cooling flow, while the other cooling flow velocity was varied between 0% and 100% of this 34 ft/s, in 25% increments. The temperature and pressure of the flow internal to the metal foam, as well as the heat exchanger external surface and cold flow temperatures, were recorded. A hot-flow Reynolds number range of 1,300 to 6,400 was tested. Results showed expected trends for the hydraulic performance of both heat exchangers. The form factors were 50.4 and 54.8 ft^-1 and the permeabilities were 9.11E-7 and 6.32E-7 ft^2 for the 20 and 40 PPI heat exchangers, respectively. Due to a defect on one side of the 40 PPI heat exchanger, the thermal results are based only on the 20 PPI heat exchanger. While the present study examines a different metal foam heat transfer configuration than most other studies, the metal foam Nusselt numbers were comparable to past studies. In addition, the pumping power required was not excessive and would allow the thermal management system to be realized without an unreasonable energy input. Therefore, a metal foam heat exchanger integrated within the ducting of a variable cycle engine is deemed feasible. The pumping power and thermal resistance were used to create a performance predicting model of the 20 PPI heat exchanger. From this model, the optimized 20 PPI heat exchanger has a hot-flow rate of 10.5 SCFM. The resulting pumping power and thermal resistance are estimated to be 6.7 BTU/hr and 0.036 °R/(BTU/hr), respectively.
272

Effects of Handrails on Vortex-Induced Vibration of Bridge Girder and Their Model Simplification for Evaluation of Wind-Resistant Performance / 橋梁桁部の渦励振応答に及ぼす高欄の影響と耐風性評価における高欄モデルの簡易化に関する研究

Yan, Yuxuan 24 November 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24293号 / 工博第5066号 / 新制||工||1791(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 八木 知己, 教授 KIM Chul-Woo, 教授 高橋 良和 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
273

Assessment of the Fate and Transport of Silver Nanoparticles in Porous Media

El Badawy, Amro 23 September 2011 (has links)
No description available.
274

Thermal and Mechanical Analysis of Carbon Foam

Anghelescu, Mihnea S. 23 April 2009 (has links)
No description available.
275

[en] INJECTIVITY AND STABILITY OF OIL-IN-WATER EMULSIONS WITH LIPOPHILIC NATURAL SURFACTANTS / [pt] INJETIVIDADE E ESTABILIDADE DE EMULSÕES ÓLEO EM ÁGUA COM SURFACTANTES NATURAIS OLEOSOS

ALANDMARA ROSA DIONIZIO LEONCIO 27 April 2020 (has links)
[pt] Emulsões estáveis de óleo-em-água (O/A) e água-em-óleo (A/O) são criadas em diferentes processos de produção de óleo devido à presença de tensoativos naturais, tais como asfaltenos, resinas, ácidos orgânicos solúveis em óleo, sólidos e ceras. Um filme interfacial é formado causando interações químicas entre os surfactantes e outras espécies na fase aquosa. Este trabalho tem como objetivo estudar a formação e estabilidade de emulsões estabilizadas por um ácido graxo como um surfactante natural, sob condições ambientes e de alta pressão, bem como seu comportamento de fluxo através de testes de injetividade em arenitos. Para este fim, o estudo da estabilidade da emulsão e análise de reologia interfacial foram realizadas através da avaliação da distribuição do tamanho de gotas e do módulo viscoelástico da interface em função da concentração de surfactante, composição aquosa e condições de fluxo. Nos testes reológicos, os resultados mostraram que a presença do ácido graxo na fase oleosa promoveu redução na tensão interfacial óleo-água e módulo elástico maior que o módulo viscoso, evidenciando importante atividade superficial. Todas as emulsões formadas com uma solução alcalina sem sais foram estáveis sob condições ambientes. Durante a injeção de emulsão em fluxo monofásico, o controle da mobilidade da água foi observado através da redução da permeabilidade absoluta como uma função forte da distribuição do tamanho da gota da emulsão e do número de capilaridade. / [en] Stable oil-in-water (O/W) and water-in-oil (W/O) emulsions are created in different processes of oil production due to the presence of natural crude oil surfactants, such as asphaltenes, resins, oil-soluble organic acids, solids, and waxes. An interfacial film is formed causing chemical interactions between the surfactants and other species in the water phase. This work aims to study the formation and stability of emulsions stabilized by a fatty acid as natural surfactant, under ambient and high-pressure conditions, and their flow behavior through injectivity tests in sandstones. To this end, study of emulsion stability and interfacial rheology analysis were performed by evaluating the droplet size distribution and interfacial viscoelastic modulus as a function of the surfactant concentration, aqueous composition, and flow conditions. In the rheological tests, results showed that the presence of the fatty acid in the oil phase promoted a reduction in the oil-water interfacial tension and elastic modulus larger than the viscous modulus, evidencing important surface activity. All emulsions formed with an alkaline solution without salts were stable under ambient conditions. During emulsion injection in single-phase flow, water mobility control was observed through the reduction of the absolute permeability as a strong function of emulsion drop size distribution and capillary number.
276

Flow and thermal transport in additively manufactured metal lattices based on novel unit-cell topologies

Kaur, Inderjot 09 August 2022 (has links)
The emergence of metal Additive Manufacturing (AM) over the last two decades has opened venues to mitigate the challenges associated with stochastic open-cell metal foams manufactured through the traditional foaming process. Regular lattices with user-defined unit cell topologies have been reported to exhibit better mechanical properties in comparison to metal foams which extend their applicability to multifunctional heat exchangers subjected to both thermal and mechanical loads. The current study aims at investigating the thermal-hydraulic characteristics of promising novel unit cell topologies realizable through AM technologies. Experimental investigation was conducted on four different topologies, viz (a) Octet, (b) Face-diagonal (FD) cube, (c) Tetrakaidecahedron, and (d) Cube, printed in single-cell thick sandwich type configuration in 420 stainless steel via Binder Jetting technology at same intended porosity. The effective thermal conductivity of the samples was found to be strongly dependent on the lattice porosity, however, no significant dependence on the unit-cell topology was demonstrated. Face-diagonal cube lattice exhibited the highest heat transfer coefficient and pressure drop, and consequently provided the lowest thermal-hydraulic performance. A procedure to incorporate the manufacturing-induced random roughness effects in the samples during numerical modelling is introduced. The numerical simulations were conducted on samples exhibiting the roughness profiles having statistically same mean roughness as the additively manufactured coupons and the results were compared to that obtained from the intended smooth-profiled CAD models that were fed into the printing machines. The analysis showed that inclusion of roughness effects in computational models can significantly improve the thermal performance predictions. Through this study, we demonstrate that additively manufactured ordered lattices exhibit superior thermal transport characteristics and future developmental efforts would require extensive experimentations to characterize their thermal and flow performance as well as local surface quality and AM-induced defect recognition. Experimental findings would also need to be supported by computational efforts where configurations which closely mimic the real AM parts could be modeled. A combined experimental-numerical framework is recommended for advancements in metal additive manufacturing-enabled enhanced heat transfer concepts.
277

Precipitation flow in a confined geometry: Mixing, fingering, and deposition

Shahsavar, Negar January 2024 (has links)
Reactive flow in porous media, leading to solid precipitation and deposition, is a fundamental process with widespread implications across various fields, such as carbonate mineralization during CO2 sequestration process. Despite the extensive research on the precipitation flow, the physical mechanisms behind the coupling between the hydrodynamics and reaction are less well-understood. This thesis investigates the complex interplay between fluid flow and a chemical reaction (A+B=C) that triggers precipitation and deposition in a Hele-Shaw cell with a gap thickness much smaller than the ones used in the past. We find that both electrostatic and hydrodynamic forces influence the onset of fingering. The results reveal that precipitation-induced fingering plays a significant role in altering mixing dynamics and precipitation rate. A model is developed, incorporating a more realistic rheology model and a first-order deposition term into an advection-diffusion-reaction framework, to comprehensively analyze the impact of critical parameters such as injection rate and initial reactant concentrations on hydrodynamic instability resulting from precipitation and deposition. Validation against experimental data demonstrates the model's capability to capture diverse precipitation patterns observed under varying experimental conditions accurately. Additionally, the results highlight the crucial role of the deposition term in accurately predicting the temporal evolution of total solid content observed in the experiments. Furthermore, the thesis explores the influence of porous media heterogeneity on calcium carbonate mineralization dynamics in a 2D radial porous system. Using a flow cell with a bimodal pore throat size distribution, the study investigates the temporal evolution of the mixing front, total precipitation amount, and spatial distribution of deposited particles under different injection rates and reactant concentrations. Findings reveal the formation of stable mixing fronts at higher injection rates, driven by the creation of large aggregates, and demonstrate enhanced precipitation in porous media dominated by advection. Conversely, in diffusion-dominated conditions, the precipitation rate transitions to scaling behaviors observed in a homogeneous media. The experimental observations elucidate the deposition of large aggregates in low-permeability regions, leading to significant alterations in cell permeability and porosity. / Thesis / Doctor of Philosophy (PhD)
278

Describing and Predicting Breakthrough Curves for non-Reactive Solute Transport in Statistically Homogeneous Porous Media

Wang, Huaguo 06 December 2002 (has links)
The applicability and adequacy of three modeling approaches to describe and predict breakthough curves (BTCs) for non-reactive solutes in statistically homogeneous porous media were numerically and experimentally investigated. Modeling approaches were: the convection-dispersion equation (CDE) with scale-dependent dispersivity, mobile-immobile model (MIM), and the fractional convection-dispersion equation (FCDE). In order to test these modeling approaches, a prototype laboratory column system was designed for conducting miscible displacement experiments with a free-inlet boundary. Its performance and operating conditions were rigorously evaluated. When the CDE with scale-dependent dispersivity is solved numerically for generating a BTC at a given location, the scale-dependent dispersivity can be specified in several ways namely, local time-dependent dispersivity, average time-dependent dispersivity, apparent time-dependent dispersivity, apparent distance-dependent dispersivity, and local distance-dependent dispersivity. Theoretical analysis showed that, when dispersion was assumed to be a diffusion-like process, the scale-dependent dispersivity was locally time-dependent. In this case, definitions of the other dispersivities and relationships between them were directly or indirectly derived from local time-dependent dispersivity. Making choice between these dispersivities and relationships depended on the solute transport problem, solute transport conditions, level of accuracy of the calculated BTC, and computational efficiency The distribution of these scale-dependent dispersivities over scales could be described as either as a power-law function, hyperbolic function, log-power function, or as a new scale-dependent dispersivity function (termed as the LIC). The hyperbolic function and the LIC were two potentially applicable functions to adequately describe the scale dependent dispersivity distribution in statistically homogeneous porous media. All of the three modeling approaches described observed BTCs very well. The MIM was the only model that could explain the tailing phenomenon in the experimental BTCs. However, all of them could not accurately predict BTCs at other scales using parameters determined at one observed scale. For the MIM and the FCDE, the predictions might be acceptable only when the scale for prediction was very close to the observed scale. When the distribution of the dispersivity over a range of scales could be reasonably well-defined by observations, the CDE might be the best choice for predicting non-reactive solute transport in statistically homogeneous porous media. / Ph. D.
279

Multi-scale Investigations of Geological Carbon Sequestration in Deep Saline Aquifers

Guo, Ruichang 25 May 2022 (has links)
Geological carbon dioxide (CO2) sequestration (GCS) in deep saline aquifers is viewed as a viable solution to dealing with the impact of anthropogenic CO2 emissions on global warming. The trapping mechanisms that control GCS include capillary trapping, structural trapping, dissolution trapping, and mineral trapping. Wettability and density-driven convection play an important role in GCS, because wettability significantly affects the efficiency of capillary trapping, and density-driven convection greatly decreases the time scale of dissolution trapping. This work focuses on the role of wettability on multiphase flow in porous media, density-driven convection in porous media, and their implications for GCS in deep saline aquifers. Wettability is a critical control over multiphase fluid flow in porous media. However, our understanding on the wettability heterogeneity of a natural rock and its effect on multiphase fluid flow in a natural rock is limited. This work innovatively models the heterogeneous wettability of a rock as a correlated random field. The realistic wetting condition of a natural rock can be reconstructed with in-situ measurements of wettability on the internal surfaces of the rock. A Bentheimer sandstone was used to demonstrate the workflow to model and reconstruct a wettability field. Relative permeability, capillary pressure-water saturation relation are important continuum-scale properties controlling multiphase flow in porous media. This work employed lattice Boltzmann method to simulate the displacement process. We found that pore-scale surface wettability heterogeneity caused noticeable local scCO2 and water redistributions under less water-wet conditions at the pore scale. At the continuum scale, the capillary pressure-water saturation curve under the heterogeneous wetting condition was overall similar to that under the homogeneous wetting condition. This suggested that the impact of local wettability heterogeneity on the capillary pressure-water saturation curve was averaged out at the entire-sample scale. The only difference was that heterogeneous wettability led to a negative entry pressure at the primary drainage stage under the intermediate-wet condition. The impact of pore-scale wettability heterogeneity was more noticeable on the relative permeability curves. Particularly, the variation of the scCO2 relative permeability curve in the heterogeneous wettability scenario was more significant than that in the homogenous wettability scenario. Results showed that higher wettability heterogeneity (i.e., higher standard deviation and higher correlation length) increased the variations in the CO2/brine relative permeability curves. Dissolution of CO2 into brine is a primary mechanism to ensure the long-term security of GCS. CO2 dissolved in brine increases the CO2-brine solution density and thus can cause downward convection. Onset of density-driven instability and onset of convective dissolution are two critical events in the transition process from a diffusion-dominated regime to a convection-dominated regime. In the laboratory, we developed an empirical correlation between light intensity and in-situ solute concentration. Based on the novel and well-controlled experimental methods, we measured the critical Rayleigh-Darcy number and critical times for the onset of density-driven instability and convective dissolution. To further investigate the impact of permeability heterogeneity on density-driven convection, a three-dimensional (3D) fluidics method was proposed to advance the investigation on density-driven convection in porous media. Heterogeneous porous media with desired spatial correlations were efficiently built with 3D-printed elementary porous blocks. In the experiments, methanol-ethylene-glycol (MEG), was used as surrogate fluid to CO2. The heterogeneous porous media were placed in a transparent tank allowing visual observations. Results showed that permeability structure controlled the migration of MEG-rich water. Permeability heterogeneity caused noticeable uncertainty in dissolution rates and uncertainty in dissolution rates increases with correlation length. To sum up, this work comprehensively employed novel experimental methods and large-scale direct simulations to investigate the sequestration of CO2 in saline aquifers at a pore scale and a continuum scale. The findings advanced our understanding on the role of wettability heterogeneity and permeability heterogeneity on GCS in deep saline aquifers. / Doctor of Philosophy / Global warming caused by anthropogenic CO2 emissions is a pressing issue to address of our time. The storage of CO2 in deep saline aquifers is a promising solution because of saline aquifers' vast storage capacity. Property heterogeneity exists extensively in saline aquifers from a continuum scale to a pore scale. The implications of pore-scale wettability heterogeneity and continuum-scale permeability heterogeneity for the storage of CO2 in saline aquifers are not clear. This work is to employ novel experimental methods and powerful simulation tools to investigate the role of wettability heterogeneity and permeability heterogeneity on the storage of CO2 in saline aquifers. This work measured contact angles on the scanned micro-CT images of a Bentheimer sandstone after a CO2 flooding. A correlated lognormal wettability model was put forward with the statistical information of the contact angle measurements. Simulations on the CO2/brine flow in the Bentheimer sandstone were performed. Results showed that the wettability heterogeneity caused noticeable redistributions of CO2/brine compared to scenarios under homogeneous wettability. Impact of wettability on capillary pressure-water saturation curve was not noticeable because the effects were averaged out through the entire rock sample. The standard deviation and correlation length caused variations on the relative permeabilities. This means that we need to take them into consideration in simulating the migration of CO2 in saline aquifers at a reservoir scale. After CO2 pools beneath the impermeable cap rock, dissolution of CO2 into brine dominates the trapping process. Convection caused by CO2 dissolution can greatly accelerate the dissolution rate. The onset of convection is a critical issue and lack of experimental evidence. This work firstly determined the onset time of instability. To further investigate the heterogeneity on the convection, this work proposed a 3D-print-based method to efficiently build heterogeneous porous media with a designed permeability distribution. The experiments were conducted, and results showed that heterogeneity structure of porous media can cause great variations on the dissolution rate of CO2. The findings of this work advanced our understanding on the migration of CO2 in saline aquifers, provided solid basis for assessment and decision on the storage of CO2 into saline aquifers.
280

Scalable Synthetic Trees for Transpiration-Powered Hydraulic Systems

Eyegheleme, Ndidi Lilyann 02 May 2024 (has links)
This dissertation delves into the theory, design and fabrication, and practical uses of synthetic trees that replicate the transpiration mechanisms of natural trees. The first chapter provides an in-depth explanation of how natural trees utilize hydraulic mechanisms to draw water from the soil, through their roots, and up to their leaves, sustaining hydration through transpiration. This process is reliant on the difference in relative humidity between the leaf and the ambient to promote evaporation, and synthetic trees replicate this cycle by integrating reservoirs and conduits with wetted nanopores, mimicking the negative Laplace pressure seen in natural trees. Chapter 2 presents a detailed theoretical framework for transpiration in synthetic trees. These trees feature a vertical array of tubes connected to a nanoporous synthetic leaf. Our model considers the impact of convective gas flow on the leaf, minimizing the diffusive boundary layer and directly influencing the leaf's negative Laplace pressure. We next analyze how the rate of evaporation and tree morphology affect the required Laplace pressure for mass conservation, in an ambient environment with an appreciable diffusive boundary layer. Our model considers the changing dynamics of the menisci, including their capability to adjust their contact angle and withdraw into nanopores to self-stabilize. We then determine conditions where transpiration is limited by evaporation or constrained by the leaf's maximum Laplace pressure, across various tree geometries and ambient conditions. In Chapter 3, the focus shifts to a practical application, as the insights from the previous chapters guide the creation of a synthetic tree for water harvesting. Solar steam generation employing a porous evaporator, with a 3D design extending beyond the free surface to mitigate heat losses, is used to demonstrate how transpiration, rather than capillarity, can raise water up glass tubes, and improve liquid transport heights over conventional methods. Chapter 4 expands on the synthetic tree concept, proposing a mobile desalination water container driven by transpiration. The container features a ring-shaped fin designed to absorb solar heat, increasing water evaporation from a nanoporous synthetic leaf. This approach combines reverse osmosis and thermal evaporation, offering a promising solution for obtaining fresh water from seawater. In Chapter 5, the study explores transpiration-powered oil-water filtration using synthetic trees. Our approach showcases the potential for natural separation of oil and water in various applications, without the need for a pump and in opposition to gravity. Chapter 6 modifies the synthetic tree design to selectively absorb and retain oil from oil-water emulsions. When water evaporates from the synthetic leaf, enabled by the generated negative suction within, oil is then drawn and contained within the system through oleophilic and hydrophobic membranes. This approach offers a sustainable method for oil spill clean-up, oil extraction and purification. Chapter 7 experimentally investigates how to eliminate the capillary driving force in synthetic trees. By over-filling the synthetic leaf's top surface to remove existing concave menisci, the study hypothesizes gravity as a replacement mechanism for negative pressure, with the water in hydrostatic columns held in tension by the overlying water supported within the porous leaf. In summary, these engineered hydraulic systems offer novel approaches to water harvesting, desalination, oil-water filtration, and the cleanup of oil spills, and the study of synthetic trees opens up a realm of possibilities for sustainable water management and environmental remediation, showcasing the potential of biomimicry in solving pressing global challenges. / Doctor of Philosophy / This dissertation explores the concept of synthetic trees designed to mimic the transpiration cycle of natural trees for various applications. The first chapter provides a detailed explanation on how this is achieved. The second chapter introduces the theoretical model, highlighting the interplay between suction pressure, spontaneous flow, and tree geometry in surface tension powered water flow. In Chapter 3, the findings inform the design of a synthetic tree for water harvesting through solar steam generation. Overcoming constraints of floating evaporators, this tree demonstrates enhanced water condensation compared to traditional reservoirs, and the use of transpiration in the tubes allow for greater height flexibility. Chapter 4 presents a theoretical design for a portable desalinating water bottle powered by transpiration. Inspired by mangrove trees, the bottle utilizes solar heat absorption, a nanoporous synthetic leaf, and reverse osmosis to spontaneously enable desalination. The hybrid approach enhances thermal evaporation and pre-filters salt, potentially producing a daily extraction of one liter of fresh water from seawater. Chapter 5 explores oil-water filtration using surface tension power in synthetic trees. Operating without pumps and against gravity, this spontaneous phase separation demonstrates potential applications in oil spill cleanup, wastewater purification, and oil extraction. In Chapter 6, the synthetic tree is further modified to selectively take up and contain only oil from an oil-water emulsion. Driven by the surface tension mechanism, oil enters the tree through oil loving and water membranes, yielding high-purity oil samples, and offering innovative solutions for various environmental and industrial challenges. Chapter 7 investigates how to stop capillary forces in synthetic trees. When water evaporates from the leaves, it creates suction, pulling water from the soil through the xylem to keep the tree hydrated. We filled the top of the synthetic leaf to remove the curved surfaces that cause capillary tension. Surprisingly, water in the vertical tubes still held against gravity. This led us to consider a new idea: gravity might be replacing surface tension, with columns of water in the tree held in tension by the water above them in the leaf. Overall, this research on synthetic trees suggests exciting new ways to address environmental issues and manage water resources sustainably, underlying the power of nature-inspired solutions.

Page generated in 0.0608 seconds