• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 85
  • 15
  • 14
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 372
  • 82
  • 74
  • 43
  • 40
  • 32
  • 31
  • 31
  • 27
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The synthesis of porphobilinogen and related compounds

Jaynes, Edgar Norris, January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1973. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record.
72

Asymmetric organic oxidation by chiral ruthenium complexes containing D2 and D4 symmetric porphyrinato ligands

Zhang, Rui, January 2000 (has links)
Thesis (Ph.D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 197-212) Also available in print.
73

Applications of metalloporphyrin chemistry : development of D₄-symmetric metalloporphyrins for enantioselective epoxidation of olefins and water-soluble metalloporphyrins for protein-protein cross-linking /

Campbell, Lara Allison, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 140-149). Available also in a digital version from Dissertation Abstracts.
74

Macromolecular ruthenium porphyrin catalysts for organic transformation reactions mechanistic and catalytic studies /

Zhang, Junlong, January 2004 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
75

Synthesis and bioactivites of new conjugates of bisphosphonate and porphyrin /

Chan, Ka Lok. January 2007 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 93-105). Also available in electronic version.
76

Transition metal complexes of expanded porphyrins

Tomat, Elisa, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
77

Porphyrin-based materials for organic solar cells

Wang, Hongda 21 April 2015 (has links)
A series of novel porphyrin materials with pushpull framework were designed and synthesized for organic solar cells (OSCs). To start with, a brief overview on the background of OSC, including dye-sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells, and the porphyrin based materials for OSC applications was presented in Chapter 1. In Chapter 2, an efficient panchromatic light harvesting was demonstrated by the co-adsorption of a porphyrin molecule HD18 or HD19 and N719 in dye-sensitized solar cells. It is apparent that the porphyrin sensitizers show strong absorption in the Soret (400500 nm) and Q bands (600700 nm), while N719 shows efficient spectral response in the 500600 nm (between the Soret and Q bands), and the combination of these two kinds of dye molecules might display strong spectral response in the full-colour region. Mechanistic investigations were carried out by various spectral and electrochemical characterizations. The best co-sensitized device based on HD18 + N719 shows considerably enhanced power conversion efficiency of 8.27%, while those individually sensitized by HD18 and N719 display efficiencies of 6.74% and 6.90%, respectively. Subsequently, an optimized co-sensitized device based on the porphyrin HD18 and organic dye PT-C6 was fabricated by a stepwise adsorption of HD18 and PT-C6. The best performance of JSC/mA cm-2 =19.61, VOC/V = 0.74, FF = 0.69 and η = 10.1%, is superior to that of the individual device made from either HD18 (η = 7.4%) or PT-C6 (η = 8.2%) under the same conditions of fabrication. The post-adsorption of PT-C6 on the porphyrin-sensitized TiO2 anode surface not only enhances the spectral response of solar cells, but also greatly retards the back reaction between conduction-band electrons in TiO2 and the oxidized species ( I_3^-) in the electrolyte. In Chapter 3, a series of new donor-π-acceptor (DπA) porphyrin sensitizers with extended π-conjugation units were designed and synthesized for DSSC applications. Appending a phenothiazine (PTZ) donor moiety to the well-investigated porphyrin core and a variety of acceptors with electron deficient property at the opposite side can significantly red shift the absorption spectra to 700 nm in dyes (24). These different acceptor groups exert a significant influence on the electrochemical and photovoltaic properties of these sensitizers. These dyes have been evaluated in dye-sensitized solar cells, showing efficiencies of 0.90~7.29% with I^-/I_3^- based electrolytes. A detailed investigation on their physical, photophysical and electrochemical properties provided some important information on the factors affecting the main photovoltaic parameters. In Chapter 4, we designed and synthesized another series of dyes based on the rigid 2-aryl-1H-imidazo[4,5-b]porphyrin donors, in which an electron-accepting group was incorporated at the position 2 of imidazo unit via an aromatic spacer. Their photophysical and electrochemical properties, theoretical calculations and dye-sensitized solar cell performances have been investigated. The spectroelectrochemical data suggests the 1H imidazo unit can extend the conjugation length and lower the optical gap. As expected, the π conjugated substituents in all these dyes produced panchromatic absorption spectra over a wide range of wavelengths and IPCE spectra featuring a broad plateau in the region 430650 nm. In addition, both DFT computational and electrochemical data indicate a smaller HOMOLUMO energy gap for HD31Zn than that for dye 1, suggesting that a slightly more facile conjugation between the porphyrin core and the diketopyrrolopyrrole (DPP) unit through the 1H imidazo unit in HD31. Both Dye 1 and HD31Zn exhibited strong solvation effect in different solvents. The effects of solvents and their structures on the photophysical and photochemical properties and device performance have been studied in detail. The results indicate that porphyrin fused heterocycle as an effective electron donor and a suitable spacer between the donor and the acceptor can reduce the molecular aggregation through solvation effects. In Chapter 5, a series of conjugated DπA small molecules (YJ1YJ6, YJ13YJ15 and YJ16YJ19) for bulk heterojunction solar cells (BHJSCs) were prepared by the Sonogashira cross coupling of the electron rich porphyrin units with electron deficient benzothiadiazole (BT), DPP, or 3-ethylrhodanine moieties. The peripheral side chains on the porphyrin units like alkoxyl phenyl, alkyl, and (triisopropylsilyl)ethynyl (TIPS) can alter the solubility, conformation, and electronic properties of the obtained DπA small molecules, allowing the tuning of their photovoltaic properties when blended with fullerene derivatives. The presence of these side chains groups on porphyrin donor units affects the torsion angles between the side chains and the conjugated main chain, but resulting in only slightly different energy levels for the highest occupied molecular orbital (HOMO) for these molecules. Their performance in solution-processed solar cells is under studying. In Chapter 6, we reported the synthesis, electrochemical properties, and optical properties of seven novel BODIPY based π-conjugated materials. These dyes were synthesized via the Stille coupling reactions between the BODIPY units and electron donating groups (EDGs), such as 4,8-bis(5-(2-ethylhexyl)thiophen-2- yl)benzo[1,2-b:4,5-b′]dithiophene (BDT), 9,9-dioctyl-9H-fluorene (FL) or thieno[3,2-b]thiophene (TH). These donors were rationally chosen based on their gas phase ionization potential (IP) values estimated by density functional theory (DFT) calculations. Cyclic voltammetry of these dyes in dichloromethane solutions reveals that HOMOs of the resulting dyes correlated well with the ionization potentials (donor strength) of the donors. On the contrary, the lowest unoccupied molecular orbital (LUMO) energy levels of all dyes are fairly invariant, independent of the donors used. This suggests that the BODIPY moiety provides the primary influence on the LUMO levels of the materials. Two series of YJ9YJ11 and YJ21YJ23 show strong visible absorption in the red region. In addition, we presented the first example of a donor-acceptor BODIPY- containing conjugated copolymers, HDP6 and HDP7, with absorption over the entire spectrum of visible light and part of near infrared region (300900nm) making them suitable as additive for light-harvesting antenna. These dyes provide us with a toolset to tune the frontier molecular orbital energy levels, while retaining the low band gap and broad absorption of these dyes. Overall, these BODIPY molecules exhibited appropriate lower lying LUMO levels (3.70 ~ 3.86 eV) when compared with that of the P3HT, indicating their potential as acceptors for many donor materials in BHJSCs.
78

Organometallic porphyrin based complexes for photophysical and biological application

Pan, Jie 12 July 2016 (has links)
This thesis focuses on the development of porphyrin-based complexes as multi-modal bio-imaging probes. Detailed studies of photophysical and biological properties were included.;In chapter 1, the general background of porphyrin and its derivatives, their structure specialty, synthetic methods, photophysical properties, and applications in biological system were described.;Curcumin-bridged porphyrin-copper complex (Por-Cu-Cur) which can permeate through the high blood-brain barrier, accumulate fast in brain tissues, and emit brilliant and stable two photon excited emission has been developed. Apart from this, Por-Cu-Cur shows high binding affinity for Ab fibrils, and decent inhibitory effect on the fibrillation of Ab1-42 peptides, as well as low toxicity to neuro-derived SK-N-SH cells in vitro and particularly in vivo in transgenic mice.;The design and synthesis of amphiphilic porphyrin linked ruthenium complexes were described. We focus on the photophysical studies of its UV-Vis absorption spectrum, fluorescence spectrum, solvatochromism, and singlet oxygen phosphorescence. The converse energy transfer mechanism of porphyrin-ruthenium complexes and zinc-porphyrin-ruthenium complexes has been clearly studied. Subcellular localization, dark cytotoxicity and photodynamic therapy has been well studied, which efficiency correspond to the energy transfer mechanism.;Based on the previous study, we would like to provide a proof-of-concept model - labelling (hot/cold) gallium in porphyrin-based complex with a short reaction time (but with high reaction yield) and aim to develop a multi-modal bioprobe for photodynamic therapy, optical imaging and positron emission tomography in one piece. An amphiphilic hot gallium-porphyrin-ruthenium compound has been synthesized (GaporRu-1) with reaction time of 15 minute and 85 % yield. The acidity of GaporRu-1 enables selective subcellular localization in lysosome. It also has an good singlet oxygen quantum yield (61.4 %), which proves its great potential for further in vivo study for as both PDT and PET agents.;Experimental details are shown in chapter 5. Including details of photophysical measurements, instrumentation and biological measurements.
79

Distributions and stable isotope characteristics of maleimides (1-H-pyrrole-2,5-diones)

Magness, Simon Lee January 2001 (has links)
No description available.
80

Spectroelectrochemical studies on porphyrins and related tetra-azamacrocycles

Low, Murray Robert January 1987 (has links)
No description available.

Page generated in 0.0346 seconds