• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mineralogy of Copper Sulfides in Porphyry Copper and Related Deposits

Schumer, Benjamin Nathan, Schumer, Benjamin Nathan January 2017 (has links)
Porphyry copper deposits represent one of the largest copper reserves on Earth. They typically contain large, low-grade reserves of primary ore and higher-grade, supergene enrichment blankets of sulfide and oxide ores. Understanding the mineralogy of porphyry copper ores and ores related to porphyry copper systems is exceedingly important for several reasons, foremost of which are the information provided by ore mineral parageneses, assemblages, and mineral chemistry on evolution of these magmatic-hydrothermal systems, and information on mineral processing characteristics of the ores. The focus of this work is to better understand the mineralogy of supergene copper sulfides in porphyry copper systems and hypogene base metal lodes related to porphyry copper systems, and use this mineralogical knowledge to improve our understanding of the processes responsible for ore formation. The objectives of this study are accomplished by two means: focusing on the crystallography and crystal chemistry of minerals, and then applying this mineralogical knowledge to a supergene sulfide enrichment blanket and hypogene massive sulfides from base metal lodes in southeastern Arizona. The discovery of a new mineral, natropalermoite, NaSr2Al4(PO4)4(OH)4, provided the opportunity to use single-crystal X-ray diffraction to solve a crystal structure, and electron-probe microanalysis (EPMA) to study the crystal chemistry of natropalermoite and how the accommodation of Na in the structure changes lengthens the unit cell along [010] and shortens it along [100] and [001] compared to its lithium analogue, palermoite. Solution of the crystal structure of the mineral nickelskutterudite, (Ni,Co,Fe)As3, allowed for the investigation of anion deficiency in minerals of the skutterudite group, a problem whose solution has eluded researchers for nearly 100 years. Two skutterudite (CoAs3) and two nickelskutterudite samples were analyzed using single-crystal X-ray diffraction, EPMA, and procrystal electron density. The results showed fully-occupied anion sites and a cation surplus, which was accommodated in the icosahedral site, proving that minerals of the skutterudite group are not anion deficient. This mineralogical knowledge was applied to the supergene enrichment blanket in the Western Copper section of the Morenci mine, Greenlee County, and hypogene massive sulfide deposits associated with a porphyry copper deposit at Bisbee, Cochise County, Arizona. This is one of very few studies of supergene sulfide blankets ever completed. One drill hole through the supergene blanket at Western Copper was examined using ore microscopy and EPMA. Results showed dominant (Cu+Fe):S ratios of 1.80 ± 0.05, 1.92 ± 0.03, and 1.10 ± 0.10, with higher (Cu+Fe):S dominant high in the blanket and low ratios dominant near the base of the blanket. These values were interpreted to be controlled by activity of Cu2+, Fe2+, and Fe3+ in solution. Massive sulfide deposits at Bisbee were investigated using ore microscopy and EPMA in order to correct the previous conflicting reports of the mineralogy and paragenesis of this famous district and interpret constraints on conditions of ore-forming fluids. Results show four types of ore: chalcopyrite-rich with hematite and/or pyrite, bornite-rich, chalcocite-rich, and a Zn-Pb association. Chalcopyrite-rich ores formed first, followed by bornite-rich and chalcocite-rich ores. All ores were formed at relatively shallow depths from oxidized, moderately sulfur-rich fluids; early fluids were higher temperature and later fluids were lower temperature and considerably more sulfidized. Zinc-lead ores formed early and were continuously dissolved and reprecipitated distal to Cu-mineralization. These patterns are similar to many other base-metal lode districts worldwide, however Bisbee contains more Zn-Pb ore than other districts with hematite-containing ores and less than those without hematite.
2

Geology and petrology of the Catface porphyry Cu-Mo deposit, Vancouver Island, and linkages to the Paleogene Cascade Arc

Smith, Colin Michael 12 April 2012 (has links)
The geology, petrology and geochemistry of Catface porphyry Cu (Mo-Au) deposit, located on the west coast of Vancouver Island are examined in detail. Detailed core logging and sampling was carried out to characterize the geometry and identity of different intrusive phases and alteration styles prevalent during the emplacement and formation of the deposit, as well as their geochemical affinity. Early- and late-stage potassic alteration is identified, as well as main-stage sodic-calcic and calcic-sodic alteration. Four distinct Paleogene intrusive phases vary from quartz diorite to granodiorite in composition. The rocks are broadly calc-alkaline, weakly peraluminous to moderately metaluminous, and have typical arc geochemical affinity. The timing of emplacement and mineralization is constrained by U-Pb and Re-Os geochronology at 40.4-41.4 Ma and 40.9 ±0.2 Ma, respectively. All four Paleogene Catface intrusive phases were emplaced close in time with a direct temporal correlation to mineralization. The chalcopyrite- and pyrite-bearing miarolitic cavities in the Halo Porphyry intrusive, combined with U-Pb and Re-Os dates suggest this intrusive phase is the most likely source of mineralizing fluids. The intrusions were emplaced at depths of less four kilometers in the crust, as evidenced by the presence of miarolitic cavities and confirmed through amphibole-plagioclase thermobarometry, which record conditions of 615–700 °C and <200 MPa. The lack of primary anhydrite and hematite, and the presence of pyrrhotite in the ore system indicate a reduced magmatic-hydrothermal event. The SO3 contents in apatites are <450 ppm, indicative of a degassed and/or sulphate-free (reduced) magma. The assemblage K-feldspar-quartz-biotite-ilmenite yields oxygen fugacities (fO2) which are 0.5 to 3.0 log units below the quartz-fayalite-magnetite (QFM) buffer at an assumed pressure of 300 MPa; orders of magnitude more reduced than typical porphyry deposits. Parental magmas to the Catface deposit were either derived from intrinsically-reduced mantle, or more typical oxidized arc magma that was subsequently reduced during ascent and emplacement. Further isotopic work is required to determine which process contributed to the reduction of these magmas in an arc setting. Nevertheless, recognition of reduced porphyry-related magmatism on west-central Vancouver Island is of similar age to that of North Fork (~36.8-38.9 Ma) deposit in Washington suggesting a consanguinity of reduced magmatism with the Paleogene Cascade arc. / Graduate

Page generated in 0.058 seconds