• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Dual-Supply Buck Converter with Improved Light-Load Efficiency

Zhang, Chao 2011 May 1900 (has links)
Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load.
2

Integrated, Dynamically Adaptive Supplies for Linear RF Power Amplifiers in Portable Applications

Sahu, Biranchinath 19 November 2004 (has links)
Energy-efficient radio frequency (RF) power amplifiers (PAs) are critical and paramount to achieve longer battery life in state-of-the-art portable systems because they typically determine and dominate the power consumption of such devices. In this dissertation, a high-efficiency, linear RF PA with a dynamically adaptive supply and bias current control for code division multiple access (CDMA) and wideband CDMA (WCDMA) is conceived, simulated, and experimentally demonstrated with a discrete PCB-level design and in integrated circuit (IC) form. The PA efficiency is improved by dynamically adjusting both its supply voltage and bias current, there by minimizing its quiescent power dissipation. The PA supply voltage is derived from the battery by a noninverting, synchronous buck-boost switching regulator because of its flexible functionality and high efficiency. Adjusting the PA supply voltage and bias current by tracking the output power, instead of following the complete envelope in large baseband bandwidth wireless applications, is achieved by a converter with a lower switching frequency and consequently higher light-load efficiency, which translates to prolonged battery life. A discrete PCB-level prototype of the proposed system with 915 MHz center frequency, CDMA IS-95 signal having 27-dBm peak-output power resulted in more than four times improvement in the average efficiency compared to a fixed-supply class-AB PA while meeting the required performance specifications. In the IC solution fabricated in AMIs 0.5-micron CMOS process through MOSIS, a dual-mode, buck-boost converter with pulse-width modulation (PWM) control for high power and pulse-frequency modulation (PFM) for low power is designed and implemented to improve the PA efficiency during active and standby operation, respectively. The performance of the dynamically adaptive supply and bias control IC was validated by realizing a 25-dBm, 1.96 GHz center frequency, WCDMA PA over an input supply range of 1.4 4.2 V. The PA with dual-mode power supply and bias control IC showed an average-efficiency improvement of seven times compared to a fixed-supply class-AB PA, which translates to five times improvement in battery life assuming the PA is active for 2 % of the total time and in standby mode otherwise.

Page generated in 0.1251 seconds