• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-Situ Geotechnical Characterization of Soft Estuarine Surficial Sediments Using a Portable Free Fall Penetrometer

Kiptoo, Dennis Kipngetich 02 July 2020 (has links)
Knowledge of geotechnical soil properties in the upper meter of the seabed is important for challenges such as scour around submerged structures, management of unexploded ordnances, and generally issues associated with active sediment transport and deposition. Portable free fall penetrometers have been previously used to provide initial information on sediment type, strength, and stratification, but challenges with the calibration of empirical parameters such as the cone factor and strain rate factor hampered the derivation of geotechnical design parameters such as undrained shear strength. This challenge applies particularly in areas of more rare seabed soil conditions such as very soft estuarine sediments. This study aims to advance the analysis procedure of portable free fall penetrometers (PFFP) in soft subaquatic fine-grained soils with natural water contents greater than the liquid limit by estimating the undrained shear strength (su). The logarithmic and power law methods for strain rate correction were investigated at sites in the York River Estuary and yielded a match to vane shear results at a logarithmic multiplier of k=0.1-0.3 and a power law rate exponent of β=0.01-0.03, indicating minimal strain rate effects. Resulting representative cone factors based on sediment strength and profile groupings ranged from 7 to 12 for logarithmic, power law, and no strain correction, and were tested at sites in the Potomac River with similar sediment properties. The PFFP su compared well with mini-vane shear measurements with differences of less than ± 0.5 kPa. Additionally, the PFFP su showed inappreciable differences in strength with or without strain rate application. Therefore, these high water content soils that exhibit little strain rate effects within a soil behavior context, can be better understood through rheological studies. Rheological studies were conducted, and the storage and loss modulus were observed to remain constant when the soil is tested over a range of frequencies. This indicates that the sediment strength is not affected by the rate of soil testing. The outcome of this study is the advanced the use of the PFFP by quantifying the strain rate effects and defining the applicable cone factors for use in estimating the undrained shear strength of soft estuarine marine soils. Furthermore, the understanding of soil behavior of these soils has been explored from rheological context. / Master of Science / Presence of unexploded munitions (UXO) in waterways and coastal environments poses a danger to the populace. UXOs located proud on the seabed can be moved by hydrodynamic forces such as waves and currents to habited areas. This has prompted the need to understand how UXOs interact with the seabed regarding erosion, burial, as well as sinking. Current methods used to detect munitions can lack accuracy from unknown seabed soil conditions. Portable free fall penetrometers (PFFP) are rapid and economical tools that are used to obtain soil information in the seabed. However, the interpretation of the penetrometer data needs to be advanced to get more accurate results of soil strength. In this research, physical soil samples were retrieved and tested in the laboratory. The laboratory results were used to calibrate the PFFP to improve the estimation of soil strength from PFFP. The estuarine soil tested exhibited high water contents raising the question of whether to describe its behavior rather as soil or suspension. Further tests were carried out to study how this soil deforms and flows when a load is applied. The results from this research enable the measuring of strength of the seabed more accurately and improves the understanding of very soft estuarine soil behavior.
2

Investigation of the Relationships Between Geotechnical Sediment Properties and Sediment Dynamics Using Geotechnical and Geophysical Field Measurements

Jaber, Reem Atef 18 July 2022 (has links)
Seabed surface sediments vary with active geomorphodynamics and sediment remobilization processes. Understanding relations between geotechnical sediment properties and sediment mobilization processes can potentially improve predictions of coastal erosion and hazard mitigation. Portable free fall penetrometers have emerged as an economic and useful tool for rapid geotechnical site characterization and uppermost sediment layer investigation. Acoustic methods have been used to assess seabed layering, scour evolution, and seabed morphology. However, there still exist major limitations in using these methods for classification and characterization of seabed sediment surface layers in the context of local sediment dynamics. Therefore, the goal of this research is to advance field data collection methods and field data availability towards advancing the current understanding and prediction of nearshore sediment dynamics. Geotechnical and geophysical measurements were conducted at different sites: Delaware Bay, Delaware; Pea Island, North Carolina; York River, Virginia; Potomac River, Maryland; Guadalupe River, Brazos River, Colorado River, Texas with different soil types and properties, hydrodynamic conditions, and morphological settings. The data collected was utilized to address the research goals through: (1) combining geotechnical and acoustic measurements to get better insight on sediment dynamics and erodibility, (2) proposing a framework that utilizes PFFP data to classify soil and estimate certain sediment properties (relative density and friction angle for sand and undrained shear strength for clays), relevant for local sediment dynamics, and (3) investigating how relevant geotechnical properties are reflected in acoustic, and specifically chirp sonar measurements. The findings of this research support the capability of portable free fall penetrometer to estimate sediment properties in topmost layers for different soil types such as friction angles, with an accuracy of ± 1° and undrained shear strength values, with <10% mismatches. Geoacoustic parameters such as acoustic impedance can also be calculated from acoustic measurements and correlated to certain sediment properties such as porosity and bulk density. Combining both measurements can yield better site characterization and accurate estimation of sediment properties for a better prediction of sediment dynamics. / Doctor of Philosophy / As the impacts of climate change seem to worsen, the likelihood of extreme events increases. This includes more frequent and severe events such as erosion, storm surges, melting glaciers, and sea level rise that impacts coastlines and coastal infrastructure. The increase in water levels increases the frequency of coastal hazards and flooding. These events result in devastating consequences, economically and environmentally, and disrupt people's lives all over the world. To adapt and reduce the severity of these consequences, there is a need to capture the changes in seabed, and a better understanding of seabed properties and their erodibility. This requires a reliable site characterization and an accurate estimate of seabed properties, which remain a challenge for different marine environments. There exist different site investigation methods to estimate seabed sediment properties that fall under geotechnical or geophysical types. One of the common geotechnical methods is a Portable free fall penetrometer (PFFPs), that presents a robust and economical tool for a rapid site assessment of topmost seabed layers. Geophysical tools, and mainly acoustic methods, are also often used to complement geotechnical methods due to their ability to cover vast areas in efficient time. However, both methods still face limitations in assessing seabed layers and properties. Therefore, the objective of this research is to develop a framework that paves the way for a reliable assessment of seabed properties using geotechnical and geophysical methods. Both methods were utilized for data collection in different locations across the US: Delaware Bay, Delaware; Pea Island, North Carolina; York River, Virginia; Potomac River, Maryland. Three additional sites Guadalupe, Brazos River, and Colorado Rivers, Texas were surveyed post hurricane Harvey that resulted in extreme flooding events. The measurements are collected from different coastal environments. This better account for the diversity in seabed to achieve a more generalized and well-integrated methodology to assess seabed layers under different conditions.

Page generated in 0.11 seconds