• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-Situ Geotechnical Characterization of Soft Estuarine Surficial Sediments Using a Portable Free Fall Penetrometer

Kiptoo, Dennis Kipngetich 02 July 2020 (has links)
Knowledge of geotechnical soil properties in the upper meter of the seabed is important for challenges such as scour around submerged structures, management of unexploded ordnances, and generally issues associated with active sediment transport and deposition. Portable free fall penetrometers have been previously used to provide initial information on sediment type, strength, and stratification, but challenges with the calibration of empirical parameters such as the cone factor and strain rate factor hampered the derivation of geotechnical design parameters such as undrained shear strength. This challenge applies particularly in areas of more rare seabed soil conditions such as very soft estuarine sediments. This study aims to advance the analysis procedure of portable free fall penetrometers (PFFP) in soft subaquatic fine-grained soils with natural water contents greater than the liquid limit by estimating the undrained shear strength (su). The logarithmic and power law methods for strain rate correction were investigated at sites in the York River Estuary and yielded a match to vane shear results at a logarithmic multiplier of k=0.1-0.3 and a power law rate exponent of β=0.01-0.03, indicating minimal strain rate effects. Resulting representative cone factors based on sediment strength and profile groupings ranged from 7 to 12 for logarithmic, power law, and no strain correction, and were tested at sites in the Potomac River with similar sediment properties. The PFFP su compared well with mini-vane shear measurements with differences of less than ± 0.5 kPa. Additionally, the PFFP su showed inappreciable differences in strength with or without strain rate application. Therefore, these high water content soils that exhibit little strain rate effects within a soil behavior context, can be better understood through rheological studies. Rheological studies were conducted, and the storage and loss modulus were observed to remain constant when the soil is tested over a range of frequencies. This indicates that the sediment strength is not affected by the rate of soil testing. The outcome of this study is the advanced the use of the PFFP by quantifying the strain rate effects and defining the applicable cone factors for use in estimating the undrained shear strength of soft estuarine marine soils. Furthermore, the understanding of soil behavior of these soils has been explored from rheological context. / Master of Science / Presence of unexploded munitions (UXO) in waterways and coastal environments poses a danger to the populace. UXOs located proud on the seabed can be moved by hydrodynamic forces such as waves and currents to habited areas. This has prompted the need to understand how UXOs interact with the seabed regarding erosion, burial, as well as sinking. Current methods used to detect munitions can lack accuracy from unknown seabed soil conditions. Portable free fall penetrometers (PFFP) are rapid and economical tools that are used to obtain soil information in the seabed. However, the interpretation of the penetrometer data needs to be advanced to get more accurate results of soil strength. In this research, physical soil samples were retrieved and tested in the laboratory. The laboratory results were used to calibrate the PFFP to improve the estimation of soil strength from PFFP. The estuarine soil tested exhibited high water contents raising the question of whether to describe its behavior rather as soil or suspension. Further tests were carried out to study how this soil deforms and flows when a load is applied. The results from this research enable the measuring of strength of the seabed more accurately and improves the understanding of very soft estuarine soil behavior.
2

Finite Element Analysis of the Application of Synthetic Fiber Ropes to Reduce Blast Response of Frames

Motley, Michael Rembert 17 December 2004 (has links)
Blast resistance has recently become increasingly relevant for structural engineers. Blast loads are created by explosive devices that, upon detonation, create pressure loads that are much higher than most that a structure would ever experience. While there are many types of blast loads that are impossible to adequately prepare for, methods are presently being developed to mitigate these loads. This research investigates the possibility of using synthetic fiber ropes as a means of blast resistance. This is the third phase of a multi-stage research endeavor whose goal is to analyze Snapping-Cable Energy Dissipators (SCEDs) for reducing the effects of large-scale lateral loads. Finite element models of portal frames were developed using the commercial finite element program ABAQUS and dynamic models were run for varying blasts and frame systems. Blast pressures of 100, 2,000, and 4,000 psi were applied to a steel portal frame and comparisons were made between unbraced frames and frames braced with springs of different stiffnesses. Additional tests were run to examine the effects of strain rate dependent yield on the results of the models. Parallel research is being conducted on the specific material behavior of the synthetic fiber ropes so that the models developed for this research can be revised for a more accurate determination of the effects of the ropes on structural systems subjected to blast loads. / Master of Science
3

GEOTECHNICAL CHARACTERIZATION OF THE BEARPAW SHALE

POWELL, J. SUZANNE 29 January 2010 (has links)
This research takes a multidisciplinary approach to comprehensively investigate the material and mechanical properties as well as pore water chemistry of the Bearpaw shale. This made it possible to characterize how these properties relate to the mechanical strength of this material. The results of this research challenge our ideas of the hydrogeology and of the geological history of the region. Core samples of the Bearpaw Formation and the overlying glacial till were collected from a field site in southern Saskatchewan, Canada. A combination of laboratory tests including multi-staged oedometer tests, constant rate of strain oedometer tests, specialized triaxial swell tests, along with pore water chemistry and finite element modelling were used to meet the following objectives: (1) To investigate the material properties and compression behaviour of the Bearpaw in addition to assessing disturbance due to specimen size; (2) Examine the time dependent behaviour of the Bearpaw and the transferability of time rate models developed for soft soils to stiff soils; (3) Examine the swelling potential and behaviour of the Bearpaw Formation and the influence of boundary conditions on this behaviour, while assessing the applicability of the swell concepts developed for compacted materials to a naturally swelling clay material; and (4) Constrain the depositional age of the till overlying the Bearpaw Shale. Contrary to what is seen in soft soils, smaller sized specimens were found to reduce disturbance, and produce more accurate and consistent results. Creep was found to follow the same laws as it does in soft soils, calling into question whether the use of preconsolidation pressure to predict geological history in stiff clays is appropriate. There was significant variation in the observed swell pressures of samples of the same size and depth. Finally, the glacial till at site was found to belong uniquely to the Battleford Formation and ranges in age from 22,500 to 27,500 years which is much younger (over 100,000 years younger) than previously believed. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2010-01-29 01:34:14.071
4

Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers

Gur, S., Mishra, S. K., Frantziskonis, G. N. 31 May 2015 (has links)
A study on shape memory alloy materials as vibration dampers is reported. An important component is the strain rate-dependent and temperature-dependent constitutive behavior of shape memory alloy, which can significantly change its energy dissipation capacity under cyclic loading. The constitutive model used accounts for the thermo-mechanical strain rate-dependent behavior and phase transformation. With increasing structural flexibility, the hysteretic loop size of shape memory alloy dampers increases due to increasing strain rates, thus further decreasing the response of the structure to cyclic excitation. The structure examined is a beam, and its behavior with shape memory alloy dampers is compared to the same beam with conventional dampers. Parametric studies reveal the superior performance of the shape memory alloy over the conventional dampers even at the resonance frequency of the beam-damper system. An important behavior of the shape memory alloy dampers is discovered, in that they absorb energy from the fundamental and higher vibration modes. In contrast, the conventional dampers transfer energy to higher modes. For the same beam control, the stiffness requirement for the shape memory alloy dampers is significantly less than that of the conventional dampers. Response quantities of interest show improved performance of the shape memory alloy over the conventional dampers under varying excitation intensity, frequency, temperature, and strain rate.
5

Structural Vulnerability Assessment of Bridge Piers in the Event of Barge Collision

Ribbans, David A 18 March 2015 (has links)
The inland waterway system in the United States is fundamental to the transportation system as a whole and the success of the nation’s economy. Barge transportation in these waterways levitates congestion on the highway system and is beneficial when comparing barge transportation to other modes of freight transportation in measures of capacity, congestion, emissions, and safety. Unavoidably, the highway system intersects with the waterways, resulting in the risk of vessels collision into bridge structures. Particularly for barge impact, the literature is questioning the accuracy and oversimplification of the current design specifications. The impact problem was investigated in this research using three-dimensional finite-element analyses. To investigate the collision of a barge into a bridge pier, a range of material models are first investigated through simulating a drop-hammer impact onto a reinforced concrete beam. A detailed model of a jumbo hopper barge is then developed, with particular detail in the bow. The barge model is examined for its response to impact into rigid piers of different size and shape. RC piers, having different shape and boundary conditions, are impacted by the barge model and assessed using selected metrics. The final part of the research examines the response of an existing bridge pier subject to an impact by a chemical transporter barge that frequently travels in the waterway.
6

Response of Wide Flange Steel Columns Subjected to Constant Axial Load and Lateral Blast Load

Shope, Ronald L. 29 November 2006 (has links)
The response of wide flange steel columns subjected to constant axial loads and lateral blast loads was examined. The finite element program ABAQUS was used to model W8x40 sections with different slendernesses and boundary conditions. For the response calculations, a constant axial force was first applied to the column and the equilibrium state was determined. Next, a short duration, lateral blast load was applied and the response time history was calculated. Changes in displacement time histories and plastic hinge formations resulting from varying the axial load were examined. The cases studied include single-span and two-span columns. In addition to ideal boundary conditions, columns with linear elastic, rotational supports were also studied. Non-uniform blast loads were considered. Major axis, minor axis, and biaxial bending were investigated. The effects of strain rate and residual stresses were examined. The results for each column configuration are presented as a set of curves showing the critical blast impulse versus axial load. The critical blast impulse is defined as the impulse that either causes the column to collapse or to exceed the limiting deflection criterion. A major goal of this effort was to develop simplified design and analysis methods. To accomplish this, two single-degree-of-freedom approaches that include the effects of the axial load were derived. The first uses a bilinear resistance function that is similar to the one used for beam analysis. This approach provides a rough estimate of the critical impulse and is suitable only for preliminary design or quick vulnerability calculations. The second approach uses a nonlinear resistance function that accounts for the gradual yielding that occurs during the dynamic response. This approach can be easily implemented in a simple computer program or spreadsheet and provides close agreement with the results from the finite element method. / Ph. D.
7

Performance of penetrometers in deepwater soft soil characterisation

Low, Han Eng January 2009 (has links)
Offshore developments for hydrocarbon resources have now progressed to water depths approaching 2500 m. Due to the difficulties and high cost in recovering high quality samples from deepwater site, there is increasing reliance on in situ tests such as piezocone and full-flow (i.e. T-bar and ball) penetration tests for determining the geotechnical design parameters. This research was undertaken in collaboration with the Norwegian Geotechnical Institute (NGI), as part of a joint industry project, to improve the reliability of in situ tests in determining design parameters and to improve offshore site investigation practice in deepwater soft sediments. In this research, a worldwide high quality database was assembled and used to correlate intact and remoulded shear strengths (measured from laboratory and vane shear tests) with penetration resistances measured by piezocone, T-bar and ball penetrometers. The overall statistics showed similar and low levels of variability of resistance factors for intact shear strength (N-factors) for all three types of penetrometer. In the correlation between the remoulded penetration resistance and remoulded shear strength, the resistance factors for remoulded shear strength (Nrem-factors) were found higher than the N-factors. As a result, the resistance sensitivity is less than the strength sensitivity. The correlations between the derived N-factors and specific soil characteristics indicated that the piezocone N-factors are more influenced by rigidity index than those for the T-bar and ball penetrometers. The effect of strength anisotropy is only apparent in respect of N-factors for the T-bar and ball penetrometers correlated to shear strengths measured in triaxial compression. On the other hand, the Nrem-factors showed slight tendency to increase with increasing strength sensitivity but were insensitive to soil index properties. These findings suggest that the full-flow penetrometers may be used to estimate remoulded shear strength and are potentially prove more reliable than the piezocone in estimating average or vane shear strength for intact soil but the reverse is probably true for the estimation of triaxial compression strength.
8

Progressive collapse simulation of reinforced concrete structures: influence of design and material parameters and investigation of the strain rate effects

Santafe Iribarren, Berta 17 June 2011 (has links)
This doctoral research work focuses on the simulation of progressive collapse of reinforced concrete structures. It aims at contributing to the ‘alternate load path’ design approach suggested by the General Services Administration (GSA) and the Department of Defense (DoD) of the United States, by providing a detailed yet flexible numerical modelling tool. <p><p>The finite element formulation adopted here is based on a multilevel approach where the response at the structural level is naturally deduced from the behaviour of the constituents (concrete and steel) at the material level. One-dimensional nonlinear constitutive laws are used to model the material response of concrete and steel. These constitutive equations are introduced in a layered beam approach, where the cross-sections of the structural members are discretised through a finite number of layers. This modelling strategy allows deriving physically motivated relationships between generalised stresses and strains at the sectional level. Additionally, a gradual sectional strength degradation can be obtained as a consequence of the progressive failure of the constitutive layers. This means that complex nonlinear sectional responses exhibiting softening can be obtained even for simplified one dimensional constitutive laws for the constituents.<p><p>This numerical formulation is used in dynamic progressive collapse simulations to study the structural response of a multi-storey planar frame subject to a sudden column loss. The versatility of the proposed methodology allows assessing the influence of the main material and design parameters in the structural failure. Furthermore, the effect of particular modelling options of the progressive collapse simulation technique, such as the column removal time or the strategy adopted for the structural verification, can be evaluated.<p><p>The potential strain rate effects on the structural response of reinforced concrete frames are also investigated. To this end, a strain rate dependent material formulation is developed, where the rate effects are introduced in both the concrete and steel constitutive response. These effects are incorporated at the structural level through the multilayered beam approach. In order to assess the degree of rate dependence in progressive collapse, the results of rate dependent simulations are presented and compared to those obtained via the rate independent approach. The influence of certain parameters on the rate dependent structural failure is also studied.<p><p>The differences obtained in terms of progressive failure degree for the considered parametric variations and modelling options are analysed and discussed. The parameters observed to have a major influence on the structural response in a progressive collapse scenario are the ductility of the steel bars, the degree of symmetry and/or continuity of the reinforcement and the column removal time. The results also depend on the strategy considered (GSA vs DoD). The strain rate effects are confirmed to play a significant role in the failure pattern. Based on these observations, general recommendations for the design of progressive collapse resisting structures are finally derived.<p><p><p><p><p>L’effondrement progressif est un sujet de recherche qui a connu un grand développement suite aux événements désastreux qui se sont produits au cours des dernières décennies. Ce phénomène est déclenché par la défaillance soudaine d’un nombre réduit d’éléments porteurs de la structure, qui provoque une propagation en cascade de l’endommagement d’élément en élément jusqu’à affecter une partie importante, voire la totalité de l’ouvrage. Le résultat est donc disproportionné par rapport à la cause. La plupart des codes de construction ont inclus des prescriptions pour le dimensionnement des structures face aux actions accidentelles. Malheureusement, ces procédures se limitent à fournir des ‘règles de bonne pratique’, ou proposent des calculs simplifiés se caractérisant par un manque de détail pour permettre leur mise en oeuvre.<p><p>Cette thèse de doctorat intitulée Simulation de l’Effondrement Progressif des Structures en Béton Armé: Influence des Paramètres Materiaux et de Dimensionnement et Investigation des Effets de Vitesse a pour but de contribuer à la simulation numérique de l’effondrement progressif des structures en béton armé. Une formulation aux éléments finis basée sur une approche multi-échelles a été développée, où la réponse à l’échelle structurale est déduite à partir de la réponse au niveau matériel des constituants (le béton et l’acier). Les sections des éléments structuraux sont divisées en un nombre fini de couches pour lesquelles des lois constitutives unidimensionnelles sont postulées. Cet outil permet une dégradation graduelle de la résistance des sections en béton armé suite à la rupture progressive des couches. Des comportements complexes au niveau des points de Gauss peuvent être ainsi obtenus, et cela même à partir de lois unidimensionnelles pour les constituants.<p><p>Cette formulation est utilisée pour la simulation de l’effondrement progressif d’ossatures 2D, avec prise en compte des effets dynamiques. La versatilité de la présente stratégie numérique permet d’analyser l’influence de différents paramètres matériaux et de dimensionnement, ainsi que d’autres paramètres de modélisation, sur la réponse structurale face à la disparition soudaine d’une colonne.<p><p>Les effets de la vitesse de déformation sur le comportement des matériaux constituants est aussi un sujet d’attention dans ce travail de recherche. Des lois constitutives prenant en compte ces effets sont postulées et incorporées au niveau structural grâce à l’approche multi-couches. Le but est d’étudier l’influence des effets de la vitesse de chargement sur la réponse structurale face à la disparition d’un élément porteur. Les resultats obtenus à l’aide de cette approche avec effets de vitesse sont comparés à ceux obtenus avec des lois indépendantes de la vitesse.<p><p>Les différences dans la réponse à la disparition d’une colonne sont analysées pour les variations paramétriques étudiées. Les paramètres ayant une influence importante sont notamment: la ductilité des matériaux constituants et la disposition et/ou la symétrie des armatures. Les effets de vitesse sont également significatifs. Sur base de ces résultats, des recommandations sont proposées pour le dimensionnement et/ou l’analyse des structures face à l’effondrement progressif.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
9

Verifikace nelineárních materiálových modelů betonu / Verification of nonlinear material models of concrete

Král, Petr January 2015 (has links)
Diploma thesis is focused on the description of the parameters of nonlinear material models of concrete, which are implemented in a computational system LS-DYNA, interacting with performance of nonlinear test calculations in system LS-DYNA on selected problems, which are formed mainly by simulations of tests of mechanical and physical properties of concrete in uniaxial compressive and tensile on cylinders with applying different boundary conditions and by simulation of bending slab, with subsequent comparison of some results of test calculations with results of the experiment. The thesis includes creation of appropriate geometric models of selected problems, meshing of these geometric models, description of parameters and application of nonlinear material models of concrete on selected problems, application of loads and boundary conditions on selected problems and performance of nonlinear calculations in a computational system LS-DYNA. Evaluation of results is made on the basis of stress-strain diagrams and load-displacement diagrams based on nonlinear calculations taking into account strain rate effects and on the basis of hysteresis curves based on nonlinear calculations in case of application of cyclic loading on selected problems. Verification of nonlinear material models of concrete is made on the basis of comparison of some results of test calculations with results obtained from the experiment.

Page generated in 0.0895 seconds