• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A heuristic featured based quantification framework for efficient malware detection : measuring the malicious intent of a file using anomaly probabilistic scoring and evidence combinational theory with fuzzy hashing for malware detection in portable executable files

Namanya, Anitta P. January 2016 (has links)
Malware is still one of the most prominent vectors through which computer networks and systems are compromised. A compromised computer system or network provides data and or processing resources to the world of cybercrime. With cybercrime projected to cost the world $6 trillion by 2021, malware is expected to continue being a growing challenge. Statistics around malware growth over the last decade support this theory as malware numbers enjoy almost an exponential increase over the period. Recent reports on the complexity of the malware show that the fight against malware as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. This thesis proposes advancing automation of the malware static analysis and detection to improve the decision-making confidence levels of a standard computer user in regards to a file’s malicious status. Therefore, this work introduces a framework that relies on two novel approaches to score the malicious intent of a file. The first approach attaches a probabilistic score to heuristic anomalies to calculate an overall file malicious score while the second approach uses fuzzy hashes and evidence combination theory for more efficient malware detection. The approaches’ resultant quantifiable scores measure the malicious intent of the file. The designed schemes were validated using a dataset of “clean” and “malicious” files. The results obtained show that the framework achieves true positive – false positive detection rate “trade-offs” for efficient malware detection.
2

A Heuristic Featured Based Quantification Framework for Efficient Malware Detection. Measuring the Malicious intent of a file using anomaly probabilistic scoring and evidence combinational theory with fuzzy hashing for malware detection in Portable Executable files

Namanya, Anitta P. January 2016 (has links)
Malware is still one of the most prominent vectors through which computer networks and systems are compromised. A compromised computer system or network provides data and or processing resources to the world of cybercrime. With cybercrime projected to cost the world $6 trillion by 2021, malware is expected to continue being a growing challenge. Statistics around malware growth over the last decade support this theory as malware numbers enjoy almost an exponential increase over the period. Recent reports on the complexity of the malware show that the fight against malware as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. This thesis proposes advancing automation of the malware static analysis and detection to improve the decision-making confidence levels of a standard computer user in regards to a file’s malicious status. Therefore, this work introduces a framework that relies on two novel approaches to score the malicious intent of a file. The first approach attaches a probabilistic score to heuristic anomalies to calculate an overall file malicious score while the second approach uses fuzzy hashes and evidence combination theory for more efficient malware detection. The approaches’ resultant quantifiable scores measure the malicious intent of the file. The designed schemes were validated using a dataset of “clean” and “malicious” files. The results obtained show that the framework achieves true positive – false positive detection rate “trade-offs” for efficient malware detection.
3

A cloud-based intelligent and energy efficient malware detection framework : a framework for cloud-based, energy efficient, and reliable malware detection in real-time based on training SVM, decision tree, and boosting using specified heuristics anomalies of portable executable files

Mirza, Qublai K. A. January 2017 (has links)
The continuity in the financial and other related losses due to cyber-attacks prove the substantial growth of malware and their lethal proliferation techniques. Every successful malware attack highlights the weaknesses in the defence mechanisms responsible for securing the targeted computer or a network. The recent cyber-attacks reveal the presence of sophistication and intelligence in malware behaviour having the ability to conceal their code and operate within the system autonomously. The conventional detection mechanisms not only possess the scarcity in malware detection capabilities, they consume a large amount of resources while scanning for malicious entities in the system. Many recent reports have highlighted this issue along with the challenges faced by the alternate solutions and studies conducted in the same area. There is an unprecedented need of a resilient and autonomous solution that takes proactive approach against modern malware with stealth behaviour. This thesis proposes a multi-aspect solution comprising of an intelligent malware detection framework and an energy efficient hosting model. The malware detection framework is a combination of conventional and novel malware detection techniques. The proposed framework incorporates comprehensive feature heuristics of files generated by a bespoke static feature extraction tool. These comprehensive heuristics are used to train the machine learning algorithms; Support Vector Machine, Decision Tree, and Boosting to differentiate between clean and malicious files. Both these techniques; feature heuristics and machine learning are combined to form a two-factor detection mechanism. This thesis also presents a cloud-based energy efficient and scalable hosting model, which combines multiple infrastructure components of Amazon Web Services to host the malware detection framework. This hosting model presents a client-server architecture, where client is a lightweight service running on the host machine and server is based on the cloud. The proposed framework and the hosting model were evaluated individually and combined by specifically designed experiments using separate repositories of clean and malicious files. The experiments were designed to evaluate the malware detection capabilities and energy efficiency while operating within a system. The proposed malware detection framework and the hosting model showed significant improvement in malware detection while consuming quite low CPU resources during the operation.
4

A Cloud-Based Intelligent and Energy Efficient Malware Detection Framework. A Framework for Cloud-Based, Energy Efficient, and Reliable Malware Detection in Real-Time Based on Training SVM, Decision Tree, and Boosting using Specified Heuristics Anomalies of Portable Executable Files

Mirza, Qublai K.A. January 2017 (has links)
The continuity in the financial and other related losses due to cyber-attacks prove the substantial growth of malware and their lethal proliferation techniques. Every successful malware attack highlights the weaknesses in the defence mechanisms responsible for securing the targeted computer or a network. The recent cyber-attacks reveal the presence of sophistication and intelligence in malware behaviour having the ability to conceal their code and operate within the system autonomously. The conventional detection mechanisms not only possess the scarcity in malware detection capabilities, they consume a large amount of resources while scanning for malicious entities in the system. Many recent reports have highlighted this issue along with the challenges faced by the alternate solutions and studies conducted in the same area. There is an unprecedented need of a resilient and autonomous solution that takes proactive approach against modern malware with stealth behaviour. This thesis proposes a multi-aspect solution comprising of an intelligent malware detection framework and an energy efficient hosting model. The malware detection framework is a combination of conventional and novel malware detection techniques. The proposed framework incorporates comprehensive feature heuristics of files generated by a bespoke static feature extraction tool. These comprehensive heuristics are used to train the machine learning algorithms; Support Vector Machine, Decision Tree, and Boosting to differentiate between clean and malicious files. Both these techniques; feature heuristics and machine learning are combined to form a two-factor detection mechanism. This thesis also presents a cloud-based energy efficient and scalable hosting model, which combines multiple infrastructure components of Amazon Web Services to host the malware detection framework. This hosting model presents a client-server architecture, where client is a lightweight service running on the host machine and server is based on the cloud. The proposed framework and the hosting model were evaluated individually and combined by specifically designed experiments using separate repositories of clean and malicious files. The experiments were designed to evaluate the malware detection capabilities and energy efficiency while operating within a system. The proposed malware detection framework and the hosting model showed significant improvement in malware detection while consuming quite low CPU resources during the operation.

Page generated in 0.0461 seconds