• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la validation des modèles de séries chronologiques spatio-temporelles multivariées

Saint-Frard, Robinson 06 1900 (has links)
Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation. / Le présent mémoire porte sur les séries chronologiques qui en plus d’être observées dans le temps, présentent également une composante spatiale. Plus particulièrement, nous étudions une certaine classe de modèles, les modèles autorégressifs spatio-temporels généralisés, ou GSTAR. Dans un premier temps, des liens sont effectués avec les modèles vectoriels autorégressifs (VAR). Nous obtenons explicitement la distribution asymptotique des autocovariances résiduelles pour les modèles GSTAR en supposant que le terme d’erreur est un bruit blanc gaussien, ce qui représente une première contribution originale. De ce résultat, des tests de type portemanteau sont proposés, dont les distributions asymptotiques sont étudiées. Afin d’illustrer la performance des statistiques de test, une étude de simulations est entreprise où des modèles GSTAR sont simulés et correctement ajustés. La méthodologie est illustrée avec des données réelles. Il est question de la production mensuelle de thé en Java occidental pour 24 villes, pour la période janvier 1992 à décembre 1999. / In this master thesis, time series models are studied, which have also a spatial component, in addition to the usual time index. More particularly, we study a certain class of models, the Generalized Space-Time AutoRegressive (GSTAR) time series models. First, links are considered between Vector AutoRegressive models(VAR) and GSTAR models. We obtain explicitly the asymptotic distribution of the residual autocovariances for the GSTAR models, assuming that the error term is a Gaussian white noise, which is a first original contribution. From that result, test statistics of the portmanteau type are proposed, and their asymptotic distributions are studied. In order to illustrate the behaviour of the test statistics, a simulation study is conducted where GSTAR models are simulated and correctly fitted. The methodology is illustrated with monthly real data concerning the production of tea in west Java for 24 cities from the period January 1992 to December 1999.
2

Sur la validation des modèles de séries chronologiques spatio-temporelles multivariées

Saint-Frard, Robinson 06 1900 (has links)
Le présent mémoire porte sur les séries chronologiques qui en plus d’être observées dans le temps, présentent également une composante spatiale. Plus particulièrement, nous étudions une certaine classe de modèles, les modèles autorégressifs spatio-temporels généralisés, ou GSTAR. Dans un premier temps, des liens sont effectués avec les modèles vectoriels autorégressifs (VAR). Nous obtenons explicitement la distribution asymptotique des autocovariances résiduelles pour les modèles GSTAR en supposant que le terme d’erreur est un bruit blanc gaussien, ce qui représente une première contribution originale. De ce résultat, des tests de type portemanteau sont proposés, dont les distributions asymptotiques sont étudiées. Afin d’illustrer la performance des statistiques de test, une étude de simulations est entreprise où des modèles GSTAR sont simulés et correctement ajustés. La méthodologie est illustrée avec des données réelles. Il est question de la production mensuelle de thé en Java occidental pour 24 villes, pour la période janvier 1992 à décembre 1999. / In this master thesis, time series models are studied, which have also a spatial component, in addition to the usual time index. More particularly, we study a certain class of models, the Generalized Space-Time AutoRegressive (GSTAR) time series models. First, links are considered between Vector AutoRegressive models(VAR) and GSTAR models. We obtain explicitly the asymptotic distribution of the residual autocovariances for the GSTAR models, assuming that the error term is a Gaussian white noise, which is a first original contribution. From that result, test statistics of the portmanteau type are proposed, and their asymptotic distributions are studied. In order to illustrate the behaviour of the test statistics, a simulation study is conducted where GSTAR models are simulated and correctly fitted. The methodology is illustrated with monthly real data concerning the production of tea in west Java for 24 cities from the period January 1992 to December 1999. / Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation.

Page generated in 0.0827 seconds