Spelling suggestions: "subject:"88séries chronologique multivariée"" "subject:"88séries chronologique multivariable""
1 |
Sur l'étude de la transformation des tests portemanteaux pur séries chronologiques multivariéesPoulin, Jennifer, M.Sc January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Sur la validation des modèles de séries chronologiques spatio-temporelles multivariéesSaint-Frard, Robinson 06 1900 (has links)
Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation. / Le présent mémoire porte sur les séries chronologiques qui en plus d’être observées
dans le temps, présentent également une composante spatiale. Plus particulièrement,
nous étudions une certaine classe de modèles, les modèles autorégressifs
spatio-temporels généralisés, ou GSTAR. Dans un premier temps, des liens sont
effectués avec les modèles vectoriels autorégressifs (VAR). Nous obtenons explicitement la distribution asymptotique des autocovariances résiduelles pour les
modèles GSTAR en supposant que le terme d’erreur est un bruit blanc gaussien,
ce qui représente une première contribution originale. De ce résultat, des tests de type portemanteau sont proposés, dont les distributions asymptotiques sont étudiées. Afin d’illustrer la performance des statistiques de test, une étude de
simulations est entreprise où des modèles GSTAR sont simulés et correctement ajustés. La méthodologie est illustrée avec des données réelles. Il est question de la production mensuelle de thé en Java occidental pour 24 villes, pour la période
janvier 1992 à décembre 1999. / In this master thesis, time series models are studied, which have also a spatial
component, in addition to the usual time index. More particularly, we study
a certain class of models, the Generalized Space-Time AutoRegressive (GSTAR)
time series models. First, links are considered between Vector AutoRegressive models(VAR) and GSTAR models. We obtain explicitly the asymptotic distribution of the residual autocovariances for the GSTAR models, assuming that the error term is a Gaussian white noise, which is a first original contribution. From that
result, test statistics of the portmanteau type are proposed, and their asymptotic
distributions are studied. In order to illustrate the behaviour of the test statistics, a simulation study is conducted where GSTAR models are simulated and correctly fitted. The methodology is illustrated with monthly real data concerning the production of tea in west Java for 24 cities from the period January 1992 to December 1999.
|
3 |
Sur la validation des modèles de séries chronologiques spatio-temporelles multivariéesSaint-Frard, Robinson 06 1900 (has links)
Le présent mémoire porte sur les séries chronologiques qui en plus d’être observées
dans le temps, présentent également une composante spatiale. Plus particulièrement,
nous étudions une certaine classe de modèles, les modèles autorégressifs
spatio-temporels généralisés, ou GSTAR. Dans un premier temps, des liens sont
effectués avec les modèles vectoriels autorégressifs (VAR). Nous obtenons explicitement la distribution asymptotique des autocovariances résiduelles pour les
modèles GSTAR en supposant que le terme d’erreur est un bruit blanc gaussien,
ce qui représente une première contribution originale. De ce résultat, des tests de type portemanteau sont proposés, dont les distributions asymptotiques sont étudiées. Afin d’illustrer la performance des statistiques de test, une étude de
simulations est entreprise où des modèles GSTAR sont simulés et correctement ajustés. La méthodologie est illustrée avec des données réelles. Il est question de la production mensuelle de thé en Java occidental pour 24 villes, pour la période
janvier 1992 à décembre 1999. / In this master thesis, time series models are studied, which have also a spatial
component, in addition to the usual time index. More particularly, we study
a certain class of models, the Generalized Space-Time AutoRegressive (GSTAR)
time series models. First, links are considered between Vector AutoRegressive models(VAR) and GSTAR models. We obtain explicitly the asymptotic distribution of the residual autocovariances for the GSTAR models, assuming that the error term is a Gaussian white noise, which is a first original contribution. From that
result, test statistics of the portmanteau type are proposed, and their asymptotic
distributions are studied. In order to illustrate the behaviour of the test statistics, a simulation study is conducted where GSTAR models are simulated and correctly fitted. The methodology is illustrated with monthly real data concerning the production of tea in west Java for 24 cities from the period January 1992 to December 1999. / Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation.
|
4 |
Les modèles vectoriels et multiplicatifs avec erreurs non-négatives de séries chronologiquesMoutran, Emilie 05 1900 (has links)
No description available.
|
5 |
Robust methods in multivariate time series / Méthodes robustes dans les séries chronologiques multivariées / Métodos robustos em séries temporais multivariadasAranda Cotta, Higor Henrique 22 August 2019 (has links)
Ce manuscrit propose de nouvelles méthodes d’estimation robustes pour les fonctions matricielles d’autocovariance et d’autocorrélation de séries chronologiques multivariées stationnaires pouvant présenter des valeurs aberrantes aléatoires additives. Ces fonctions jouent un rôle important dans l’identification et l’estimation des paramètres de modèles de séries chronologiques multivariées stationnaires. Nous proposons tout d'abord de nouveaux estimateurs des fonctions matricielles d’autocovariance et d’autocorrélation construits en utilisant une approche spectrale à l'aide du périodogramme matriciel. Comme dans le cas des estimateurs classiques des fonctions d’autocovariance et d’autocorrélation matricielles, ces estimateurs sont affectés par des observations aberrantes. Ainsi, toute procédure d'identification ou d'estimation les utilisant est directement affectée, ce qui entraîne des conclusions erronées. Pour atténuer ce problème, nous proposons l’utilisation de techniques statistiques robustes pour créer des estimateurs résistants aux observations aléatoires aberrantes. Dans un premier temps, nous proposons de nouveaux estimateurs des fonctions d’autocorvariance et d’autocorrélation de séries chronologiques univariées. Les domaines temporel et fréquentiel sont liés par la relation existant entre la fonction d’autocovariance et la densité spectrale. Le périodogramme étant sensible aux données aberrantes, nous obtenons un estimateur robuste en le remplaçant parle $M$-périodogramme. Les propriétés asymptotiques des estimateurs sont établies. Leurs performances sont étudiées au moyen de simulations numériques pour différentes tailles d’échantillons et différents scénarios de contamination. Les résultats empiriques indiquent que les méthodes proposées fournissent des valeurs proches de celles obtenues par la fonction d'autocorrélation classique quand les données ne sont pas contaminées et resistent à différents cénarios de contamination. Ainsi, les estimateurs proposés dans cette thèse sont des méthodes alternatives utilisables pour des séries chronologiques présentant ou non des valeurs aberrantes. Les estimateurs obtenus pour des séries chronologiques univariées sont ensuite étendus au cas de séries multivariées. Cette extension est simplifiée par le fait que le calcul du périodogramme croisé ne fait intervenir que les coefficients de Fourier de chaque composante de la série. Le $M$-périodogramme matriciel apparaît alors comme une alternative robuste au périodogramme matriciel pour construire des estimateurs robustes des fonctions matricielles d’autocovariance et d’autocorrélation. Les propriétés asymptotiques sont étudiées et des expériences numériques sont réalisées. Comme exemple d'application avec des données réelles, nous utilisons les fonctions proposées pour ajuster un modèle autoregressif par la méthode de Yule-Walker à des données de pollution collectées dans la région de Vitória au Brésil.Enfin, l'estimation robuste du nombre de facteurs dans les modèles factoriels de grande dimension est considérée afin de réduire la dimensionnalité. En présence de valeurs aberrantes, les critères d’information proposés par Bai & Ng (2002) tendent à surestimer le nombre de facteurs. Pour atténuer ce problème, nous proposons de remplacer la matrice de covariance standard par la matrice de covariance robuste proposée dans ce manuscrit. Nos simulations montrent qu'en l'absence de contamination, les méthodes standards et robustes sont équivalentes. En présence d'observations aberrantes, le nombre de facteurs estimés augmente avec les méthodes non robustes alors qu'il reste le même en utilisant les méthodes robustes. À titre d'application avec des données réelles, nous étudions des concentrations de polluant PM$_{10}$ mesurées dans la région de l'Île-de-France en France. / This manuscript proposes new robust estimation methods for the autocovariance and autocorrelation matrices functions of stationary multivariates time series that may have random additives outliers. These functions play an important role in the identification and estimation of time series model parameters. We first propose new estimators of the autocovariance and of autocorrelation matrices functions constructed using a spectral approach considering the periodogram matrix periodogram which is the natural estimator of the spectral density matrix. As in the case of the classic autocovariance and autocorrelation matrices functions estimators, these estimators are affected by aberrant observations. Thus, any identification or estimation procedure using them is directly affected, which leads to erroneous conclusions. To mitigate this problem, we propose the use of robust statistical techniques to create estimators resistant to aberrant random observations.As a first step, we propose new estimators of autocovariance and autocorrelation functions of univariate time series. The time and frequency domains are linked by the relationship between the autocovariance function and the spectral density. As the periodogram is sensitive to aberrant data, we get a robust estimator by replacing it with the $M$-periodogram. The $M$-periodogram is obtained by replacing the Fourier coefficients related to periodogram calculated by the standard least squares regression with the ones calculated by the $M$-robust regression. The asymptotic properties of estimators are established. Their performances are studied by means of numerical simulations for different sample sizes and different scenarios of contamination. The empirical results indicate that the proposed methods provide close values of those obtained by the classical autocorrelation function when the data is not contaminated and it is resistant to different contamination scenarios. Thus, the estimators proposed in this thesis are alternative methods that can be used for time series with or without outliers.The estimators obtained for univariate time series are then extended to the case of multivariate series. This extension is simplified by the fact that the calculation of the cross-periodogram only involves the Fourier coefficients of each component from the univariate series. Thus, the $M$-periodogram matrix is a robust periodogram matrix alternative to build robust estimators of the autocovariance and autocorrelation matrices functions. The asymptotic properties are studied and numerical experiments are performed. As an example of an application with real data, we use the proposed functions to adjust an autoregressive model by the Yule-Walker method to Pollution data collected in the Vitória region Brazil.Finally, the robust estimation of the number of factors in large factorial models is considered in order to reduce the dimensionality. It is well known that the values random additive outliers affect the covariance and correlation matrices and the techniques that depend on the calculation of their eigenvalues and eigenvectors, such as the analysis principal components and the factor analysis, are affected. Thus, in the presence of outliers, the information criteria proposed by Bai & Ng (2002) tend to overestimate the number of factors. To alleviate this problem, we propose to replace the standard covariance matrix with the robust covariance matrix proposed in this manuscript. Our Monte Carlo simulations show that, in the absence of contamination, the standard and robust methods are equivalent. In the presence of outliers, the number of estimated factors increases with the non-robust methods while it remains the same using robust methods. As an application with real data, we study pollutant concentrations PM$_{10}$ measured in the Île-de-France region of France. / Este manuscrito é centrado em propor novos métodos de estimaçao das funçoes de autocovariancia e autocorrelaçao matriciais de séries temporais multivariadas com e sem presença de observaçoes discrepantes aleatorias. As funçoes de autocovariancia e autocorrelaçao matriciais desempenham um papel importante na analise e na estimaçao dos parametros de modelos de série temporal multivariadas. Primeiramente, nos propomos novos estimadores dessas funçoes matriciais construıdas, considerando a abordagem do dominio da frequencia por meio do periodograma matricial, um estimador natural da matriz de densidade espectral. Como no caso dos estimadores tradicionais das funçoes de autocovariancia e autocorrelaçao matriciais, os nossos estimadores tambem sao afetados pelas observaçoes discrepantes. Assim, qualquer analise subsequente que os utilize é diretamente afetada causando conclusoes equivocadas. Para mitigar esse problema, nos propomos a utilizaçao de técnicas de estatistica robusta para a criaçao de estimadores resistentes as observaçoes discrepantes aleatorias. Inicialmente, nos propomos novos estimadores das funçoes de autocovariancia e autocorrelaçao de séries temporais univariadas considerando a conexao entre o dominio do tempo e da frequencia por meio da relaçao entre a funçao de autocovariancia e a densidade espectral, do qual o periodograma tradicional é o estimador natural. Esse estimador é sensivel as observaçoes discrepantes. Assim, a robustez é atingida considerando a utilizaçao do Mperiodograma. O M-periodograma é obtido substituindo a regressao por minimos quadrados com a M-regressao no calculo das estimativas dos coeficientes de Fourier relacionados ao periodograma. As propriedades assintoticas dos estimadores sao estabelecidas. Para diferentes tamanhos de amostras e cenarios de contaminaçao, a performance dos estimadores é investigada. Os resultados empiricos indicam que os métodos propostos provem resultados acurados. Isto é, os métodos propostos obtêm valores proximos aos da funçao de autocorrelaçao tradicional no contexto de nao contaminaçao dos dados. Quando ha contaminaçao, os M-estimadores permanecem inalterados. Deste modo, as funçoes de M-autocovariancia e de M-autocorrelaçao propostas nesta tese sao alternativas vi aveis para séries temporais com e sem observaçoes discrepantes. A boa performance dos estimadores para o cenario de séries temporais univariadas motivou a extensao para o contexto de séries temporais multivariadas. Essa extensao é direta, haja vista que somente os coeficientes de Fourier relativos à cada uma das séries univariadas sao necessarios para o calculo do periodograma cruzado. Novamente, a relaçao de dualidade entre o dominio da frequência e do tempo é explorada por meio da conexao entre a funçao matricial de autocovariancia e a matriz de densidade espectral de séries temporais multivariadas. É neste sentido que, o presente artigo propoe a matriz M-periodograma como um substituto robusto à matriz periodograma tradicional na criaçao de estimadores das funçoes matriciais de autocovariancia e autocorrelaçao. As propriedades assintoticas sao estudas e experimentos numéricos sao realizados. Como exemplo de aplicaçao à dados reais, nos aplicamos as funçoes propostas no artigo na estimaçao dos parâmetros do modelo de série temporal multivariada pelo método de Yule-Walker para a modelagem dos dados MP10 da regiao de Vitoria/Brasil. Finalmente, a estimaçao robusta dos numeros de fatores em modelos fatoriais aproximados de alta dimensao é considerada com o objetivo de reduzir a dimensionalidade. Ésabido que dados discrepantes afetam as matrizes de covariancia e correlaçao. Em adiçao, técnicas que dependem do calculo dos autovalores e autovetores dessas matrizes, como a analise de componentes principais e a analise fatorial, sao completamente afetadas. Assim, na presença de observaçoes discrepantes, o critério de informaçao proposto por Bai & Ng (2002) tende a superestimar o numero de fatores. [...]
|
6 |
Modélisation des modèles autorégressifs vectoriels avec variables exogènes et sélection d’indicesOscar, Mylène 05 1900 (has links)
Ce mémoire porte sur l’étude des modèles autorégressifs avec variables exogènes et sélection d’indices. La littérature classique regorge de textes concernant la sélection d’indices dans les modèles autorégressifs. Ces modèles sont particulièrement utiles pour des données macroéconomiques mesurées sur des périodes de temps modérées à longues. Effectivement, la lourde paramétrisation des modèles complets peut souvent être allégée en utilisant la sélection d’indices aboutissant ainsi à des modèles plus parcimonieux. Les modèles à variables exogènes sont très intéressants dans le contexte où il est connu que les variables à l’étude sont affectées par d’autres variables, jouant le rôle de variables explicatives, que l’analyste ne veut pas forcément modéliser. Ce mémoire se propose donc d’étudier les modèles autorégressifs vectoriels avec variables exogènes et sélection d’indices. Ces modèles ont été explorés, entre autres, par Lütkepohl (2005), qui se contente cependant d’esquisser les développements mathématiques. Nous concentrons notre étude sur l’inférence statistique sous des conditions précises, la modélisation ainsi que les prévisions. Notre objectif est de comparer les modèles avec sélection d’indices aux modèles autorégressifs avec variables exogènes complets classiques. Nous désirons déterminer si l’utilisation des modèles avec sélection d’indices est marquée par une différence favorable au niveau du biais et de l’écart-type des estimateurs ainsi qu’au niveau des prévisions de valeurs futures. Nous souhaitons également comparer l’efficacité de la sélection d’indices dans les modèles autorégressifs ayant des variables exogènes à celle dans les modèles autorégressifs. Il est à noter qu’une motivation première dans ce mémoire est l’estimation dans les modèles autorégressifs avec variables exogènes à sous-ensemble d’indices.
Dans le premier chapitre, nous présentons les séries temporelles ainsi que les diverses notions qui y sont rattachées. De plus, nous présentons les modèles linéaires classiques multivariés, les modèles à variables exogènes puis des modèles avec sélection d’indices. Dans le deuxième chapitre, nous exposons le cadre théorique de l’estimation des moindres carrés dans les modèles autorégressifs à sous-ensemble d’indices ainsi que le comportement asymptotique de l’estimateur. Ensuite, nous développons la théorie pour l’estimation des moindres carrés (LS) ainsi que la loi asymptotique des estimateurs pour les modèles autorégressifs avec sélection d’indices (SVAR) puis nous faisons de même pour les modèles
autorégressifs avec variables exogènes et tenant compte de la sélection des indices (SVARX). Spécifiquement, nous établissons la convergence ainsi que la distribution asymptotique pour l’estimateur des moindres carrés d’un processus autorégressif vectoriel à sous-ensemble d’indices et avec variables exogènes. Dans le troisième chapitre, nous appliquons la théorie spécifiée précédemment lors de simulations de Monte Carlo. Nous évaluons de manière empirique les biais et les écarts-types des coefficients trouvés lors de l’estimation ainsi que la proportion de fois que le modèle ajusté correspond au vrai modèle pour différents critères de sélection, tailles échantillonnales et processus générateurs des données. Dans le quatrième chapitre, nous appliquons la théorie élaborée aux chapitres 1 et 2 à un vrai jeu de données provenant du système canadien d’information socioéconomique (CANSIM), constitué de la production mensuelle de fromage mozzarella, cheddar et ricotta au Canada, expliquée par les prix mensuels du lait de bovin non transformé dans les provinces de Québec, d’Ontario et de la Colombie-Britannique pour la période allant de janvier 2003 à juillet 2021. Nous ajustons ces données à un modèle autorégressif avec variables exogènes complet puis à un modèle autorégressif avec variables exogènes et sélection d’indices. Nous comparons ensuite les résultats obtenus avec le modèle complet à ceux obtenus avec le modèle restreint.
Mots-clés : Processus autorégressif à sous-ensemble d’indices, variables exogènes, esti mation des moindres carrés, sélection de modèle, séries chronologiques multivariées, processus
stochastiques, séries chronologiques. / This Master’s Thesis focuses on the study of subset autoregressive models with exoge nous variables. Many texts from the classical literature deal with the selection of indexes in autoregressive models. These models are particularly useful for macroeconomic data measured over moderate to long periods of time. Indeed, the heavy parameterization of full models can often be simplified by using the selection of indexes, thus resulting in more parsimonious models. Models with exogenous variables are very interesting in the context where it is known that the variables under study are affected by other variables, playing the role of explanatory variables, not necessarily modeled by the analyst. This Master’s
Thesis therefore proposes to study vector subset autoregressive models with exogenous variables. These models have been explored, among others, by Lütkepohl (2005), who merely sketches proofs of the statistical properties. We focus our study on statistical inference under precise conditions, modeling and forecasting for these models. Our goal is to compare
restricted models to full classical autoregressive models with exogenous variables. We want to determine whether the use of restricted models is marked by a favorable difference in the bias and standard deviation properties of the estimators as well as in forecasting future values. We also compare the efficiency of index selection in autoregressive models with exogenous variables to that in autoregressive models. It should be noted that a primary motivation in this Master’s Thesis is the estimation in subset autoregressive models with exogenous variables.
In the first chapter, we present time series as well as the various concepts which are attached to them. In addition, we present the classical multivariate linear models, models with exogenous variables and then we present subset models. In the second chapter, we present the theoretical framework for least squares estimation in subset autoregressive models as well as the asymptotic behavior of the estimator. Then, we develop the theory for the estimation of least squares (LS) as well as the asymptotic distribution of the estimators for the subset autoregressive models (SVAR), and we do the same for the subset autoregressive models with exogenous variables (SVARX). Specifically, we establish the convergence as well as the asymptotic distribution for the least squares estimator of a subset autoregressive process with exogenous variables. In the third chapter, we apply the theory specified above in Monte Carlo simulations. We evaluate empirically the biases
and the standard deviations of the coefficients found during the estimation as well as the proportion of times that the adjusted model matches the true model for different selection criteria, sample size and data generating processes. In the fourth chapter, we apply the theory developed in chapters 1 and 2 to a real dataset from the Canadian Socio-Economic
Information System (CANSIM) consisting of the monthly production of mozzarella, cheddar and ricotta cheese in Canada, explained by the monthly prices of unprocessed bovine milk in the provinces of Quebec, Ontario and British Columbia from January 2003 to July 2021. We fit these data with a full autoregressive model with exogenous variables and then to a
subset autoregressive model with exogenous variables. Afterwards, we compare the results obtained with the complete model to those obtained with the subset model.
Keywords : Subset autoregressive process, exogenous variables, least squares estimation,
model selection, multivariate time series, stochastic process, time series.
|
Page generated in 0.1139 seconds