• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 25
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 25
  • 17
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulace polohy svisle otáčivého ramene / Position control of the vertically rotative arm

Nykodým, Libor January 2009 (has links)
This masters theses deal with computer control of the vertically rotative arm. The actuator of this arm is a direct current motor for its numeric control is used a programmable logic controller. The produce is several alternatives of a resolution varying in available quality at first. In this graduation theses is solved a user interface in the form of touch screen.
2

Modeling and precision control of ionic polymer metal composite

Bhat, Nikhil Dilip 15 November 2004 (has links)
This thesis describes the open-loop behavior of an ionic polymer metal composite (IPMC) strip as a novel actuator, the empirical force and position models, the control system and the improved dynamic characteristics with the feedback control implemented. Ionic polymer metal composite is a novel polymer in the class of electroactive polymers. IPMC consists of a base polymer coated with electrodes made up of highly conducting pure metals such as gold. The actuation behavior of IPMC can be attributed to the bending of an IPMC strip upon application of voltage across its thickness. The main reasons for the bending are ion migration on the application of voltage and swelling and contraction caused by water content. An experimental setup to study the open-loop force and tip displacement of an IPMC strip in a cantilever configuration was developed, and real time controllers were implemented. In open loop, the force response of the IPMC strip of dimensions 25 mm x 3.9 mm x 0.16 mm to a 1.2-V step input is studied. The open-loop rise time was 0.08 s and the percent overshoot was 131.62 %, while the settling time was about 10 s. Based on this open-loop step response using a least-square curve-fitting methodology, a fourth-order empirical transfer function from the voltage input to the force output was derived. The tip displacement response of an IPMC strip of dimensions 23 mm x 3.96 mm x 0.16 mm to a 1.2-V step input was also studied. The step response exhibited a 205.34 % overshoot with a rise time of 0.08 s, and the settling time was 27 s. A fourth-order empirical transfer function from the step input to the tip displacement as output was also derived. Based on the derived transfer functions lead-lag feedback controllers were designed for precision control of both force and displacement. The control objectives were to decrease the settling time and the percent overshoot, and achieve reference input tracking. After implementing the controllers, the percent overshoot decreased to 30% while the settling time was reduced to 1.5 s in case of force control. With position control, the settling time was reduced to 1 s while the percent overshoot decreased to 20%. Precision micro-scale force and position-control capabilities of the IPMC were also demonstrated. A 4 ?N force resolution was achieved, with a force noise of 0.904-?N rms. The position resolution was 20 ?m with a position noise of 7.6-?m rms.
3

Modeling and precision control of ionic polymer metal composite

Bhat, Nikhil Dilip 15 November 2004 (has links)
This thesis describes the open-loop behavior of an ionic polymer metal composite (IPMC) strip as a novel actuator, the empirical force and position models, the control system and the improved dynamic characteristics with the feedback control implemented. Ionic polymer metal composite is a novel polymer in the class of electroactive polymers. IPMC consists of a base polymer coated with electrodes made up of highly conducting pure metals such as gold. The actuation behavior of IPMC can be attributed to the bending of an IPMC strip upon application of voltage across its thickness. The main reasons for the bending are ion migration on the application of voltage and swelling and contraction caused by water content. An experimental setup to study the open-loop force and tip displacement of an IPMC strip in a cantilever configuration was developed, and real time controllers were implemented. In open loop, the force response of the IPMC strip of dimensions 25 mm x 3.9 mm x 0.16 mm to a 1.2-V step input is studied. The open-loop rise time was 0.08 s and the percent overshoot was 131.62 %, while the settling time was about 10 s. Based on this open-loop step response using a least-square curve-fitting methodology, a fourth-order empirical transfer function from the voltage input to the force output was derived. The tip displacement response of an IPMC strip of dimensions 23 mm x 3.96 mm x 0.16 mm to a 1.2-V step input was also studied. The step response exhibited a 205.34 % overshoot with a rise time of 0.08 s, and the settling time was 27 s. A fourth-order empirical transfer function from the step input to the tip displacement as output was also derived. Based on the derived transfer functions lead-lag feedback controllers were designed for precision control of both force and displacement. The control objectives were to decrease the settling time and the percent overshoot, and achieve reference input tracking. After implementing the controllers, the percent overshoot decreased to 30% while the settling time was reduced to 1.5 s in case of force control. With position control, the settling time was reduced to 1 s while the percent overshoot decreased to 20%. Precision micro-scale force and position-control capabilities of the IPMC were also demonstrated. A 4 ?N force resolution was achieved, with a force noise of 0.904-?N rms. The position resolution was 20 ?m with a position noise of 7.6-?m rms.
4

Theory, Design and Implementation of Time Optimal Digital Position Control

Szabados, Barna 09 1900 (has links)
<p> The following study is an attempt to design a minimum-time digital position controller. </p> <p> The. investigation of the theoretical problem of the minimum time position control leads to a survey of stepping motors, which seem to provide a natural solution to the problem. However the permanentic d.c. motor is shown to be more suitable. Approximate switching characteristics are derived from the mathematical models chosen. </p> <p> Quantizing the shaft position, a digital controller is practically implemented and the experimental results confirm the theory. </p> <p> To solve the trickiest problem of measuring the velocity of the shaft, a new concept of digital tachometer is derived and implemented. Providing a very high precision and resolution, the new tachometer proved itself much better than any other instrument available now, and its direct application to the controller simplifies the latter and improves it considerably. </p> / Thesis / Doctor of Philosophy (PhD)
5

Motion Control of Rigid Bodies in SE(3)

Roza, Ashton 26 November 2012 (has links)
This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.
6

A Control Algorithm for an Ultrasonic Motor / En styralgoritm till en ultraljudsmotor

Arkad, Jenny, Andersson, Tomas January 2011 (has links)
This report is the result of a master thesis work where the goal was to develop acontrol system for a type of ultrasonic motor. The ultrasonic motors use ultrasonicvibrations from a piezoelectric material to produce a rotating motion. They arepowered by two sinusoidal voltages and their control signals generally are thevoltages amplitude, frequency and the phase difference between the two voltages.In this work the focus is on control using only amplitude and frequency. A feedbacksignal was provided by an encoder, giving an angular position. The behavior of themotors were investigated for various sets of control signals. From collected data alinearized static model was derived for the motor speed. This derived model wasused to create a two part control system, with an inner control loop to managethe speed of the motors using a PI controller and an outer control loop to managethe position of the motors. A simple algorithm was used for the position controland the result was a control system able to position the motors with a 0.1 degreeaccuracy. The motors show potential for greater accuracy with a position feedback,but the result in this work is limited by the encoder used in the experiments.
7

Closed-loop Real-time Control of a Novel Linear Magnetostrictive Actuator

Chen, Chien-Fan 2010 August 1900 (has links)
This thesis presents the design of various closed-loop real-time control of a novel linear magnetostrictive actuator. The novel linear magnetostrictive actuator which uses Terfenol-D as the magnetostrictive material was developed by Sadighi. It solves the problem of power consumption in a conventional magnetostrictive actuator. However, the control system of this magnetostrictive actuator cannot control the current in the coils, which limits the performances of the real-time position control. In the closed-loop real-time control system proposed in this thesis, the controller is designed depending on the change of current. The closed-loop real-time control design focused on the position control of the active element in the novel linear magnetostrictive actuator. The closed-loop position-control system of the linear magnetostrictive actuator was successfully designed by implementing a closed-loop current-control system as an inner loop of the entire control system. This design offers the flexibility to design various position controllers in the closed-loop position-control system. The closed-loop current-control design uses pulse-width modulation (PWM) signal to change the current in the coils of the novel linear magnetostrictive actuator. By changing the duty ratio of the PWM signal, the current in the coils can be changed from zero to its maximum value. With a current controller using an integrator with a gain of 10, the current can be controlled with high response time and an error of /- 0.01 A. The position-controller design was successfully conducted by using four different approaches. First, a proportional-integral-derivative (PID) controller which was designed by relay-auto tuning method with experiments exhibited a position error of ±1 μm with a 5 μm peak-to-peak position noise. Second, a PID controller which was designed by root-locus can control the position with a position error of /- 3-4 μm with a 5 μm peak-to-peak position noise. Third, a linear variable velocity controller exhibited a position error of /-5 μm with a 5 mu m peak-to-peak position noise. Then, the sliding mode control (SMC) exhibited a position error of /-5 μm with a 5 μm peak-to-peak position noise.
8

Motion Control of Rigid Bodies in SE(3)

Roza, Ashton 26 November 2012 (has links)
This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.
9

High-Performance Digital Hydraulic Tracking Control of a Mobile Boom Mockup

Linjama, Matti, Huova, Mikko, Karhu, Otso, Huhtala, Kalevi 27 April 2016 (has links) (PDF)
The automation of hydraulic mobile machinery, such as excavators, requires high performance control solutions. In hydraulics, this means fast and accurate force, velocity and position control of hydraulic cylinder. Especially the force control is known to be difficult with traditional servo valves. Fast digital hydraulic valves together with modern control solutions can overcome this problem. This paper uses a new force control solution, which is based on the fast digital hydraulic valves and model based control principle. The control solution is applied in a heavy axis mimicking dynamics of mobile machine booms. Experimental results show good force, velocity and position tracking performance with varying load masses. The slow velocity performance is also much improved when compared to the earlier results.
10

Plasma vertical position control in the COMPASS–D tokamak

Vyas, Parag January 1996 (has links)
The plasma vertical position system on the COMPASS–D tokamak is studied in this thesis. An analogue P+D controller is used to regulate the plasma vertical position which is open loop unstable. Measurements from inside the vessel are used for the derivative component of the control signal and external measurements for the proportional component. Two main sources of disturbances are observed on COMPASS–D. One source is 600Hz noise from thyristor power supplies which cause large oscillations at the control amplifier output. Another source is impulse–like disturbances due to ELMs (Edge Localized Modes) and this can occasionally lead to loss of control when the control amplifier saturates. Models of the plasma open loop dynamics were obtained using the process of system identification. Experimental data is used to fit the coefficients of a mathematical model. The frequency response of the model is strongly dependent on the shape of the plasma. The effect of shielding by the vessel wall on external measurements when compared with internal measurements is also observed. The models were used to predict values of gain margins and phase crossover frequencies which were found to be in good agreement with measured values. The harsh reactor conditions on the proposed ITER tokamak preclude the use of internal measurements. On COMPASS–D the stability margins of the loop decrease when using only external flux loops. High order controllers were designed to stabilize the system using only external measurements and to reduce the effect of 600Hz noise on the control amplifier voltage. The controllers were tested on COMPASS–D and demonstrated the improved performance of high order controllers over the simple P+D controller. ELMs cause impulse–like disturbances on the plasma position. The optimal controller minimizing the peak of the impulse response can be calculated analytically for COMPASS–D. A multiobjective controller which combines a small peak impulse response with robust stability and noise attenuation can be obtained using a numerical search.

Page generated in 0.1146 seconds