• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 846
  • 310
  • 168
  • 102
  • 89
  • 30
  • 29
  • 28
  • 20
  • 18
  • 16
  • 12
  • 8
  • 7
  • 7
  • Tagged with
  • 1900
  • 661
  • 570
  • 232
  • 227
  • 224
  • 179
  • 144
  • 141
  • 138
  • 126
  • 119
  • 115
  • 115
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

HARDWARE DESIGN AND IMPLEMENTATION OFA MULTI-CHANNEL GPS SIMULATOR

Yuhong, Zhu, Yanhong, Kou, Qing, Chang, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / Hardware architecture and design details of a multi-channel GPS signal simulator with highly flexibility is presented, while the dynamic performance objectives and the requirements on the hardware architecture are discussed. The IF part of the simulator is implemented almost entirely in the digital domain by use of a field programmable gate array (FPGA), which mainly include C/A code generators, carrier generators, spreaders, and BPSK modulators. The results of testing the proposed simulator hardware architecture at IF with the help of a GPS receiver are presented.
282

Intelligent joint channel parameter estimation techniques for mobile wireless positioning applications

Li, Wei January 2010 (has links)
Mobile wireless positioning has recently received great attention. For mobile wireless communication networks, an inherently suitable approach is to obtain the parameters that are used for positioning estimates from the radio signal measurements between a mobile device and one or more xed base stations. However, obtaining accurate estimates of these location-dependent channel parameters is a challenging task. The focus of this thesis is on the estimation of these channel parameters for mobile wireless positioning applications. In particular, we investigate novel estimators that jointly estimate more than one type of channel parameters. We rst perform a comprehensive critical review on the most recent and popular joint channel parameter estimation techniques. Secondly, we improve a state-of-the-art technique, namely the Space Alternating Generalised Expectation maximisation (SAGE) algorithm by employing adaptive interference cancellation to improve the estimation accuracy of weaker paths. Thirdly, a novel intelligent channel parameter estimation technique using Evolution Strategy (ES) is proposed to overcome the drawbacks of the existing iterative maximum likelihood methods. Furthermore, given that in reality it is di cult to obtain the number of multipath in advance, we propose a two tier Hierarchically Organised ES to jointly estimate the number of multipath as well as the channel parameters. Finally, we extend the proposed ES method to further estimate the Doppler shift in mobile environments. Our proposed intelligent joint channel estimation techniques are shown to exhibit excellent performance even with low Signal to Noise Ratio (SNR) channel conditions as well as robust against uncertainties in initialisations.
283

Context-aware GPS integrity monitoring for Intelligent Transport Systems (ITS)

Binjammaz, Tareq January 2015 (has links)
The integrity of positioning systems has become an increasingly important requirement for location-based Intelligent Transports Systems (ITS). The navigation systems, such as Global Positioning System (GPS), used in ITS cannot provide the high quality positioning information required by most services, due to the various type of errors from GPS sensor, such as signal outage, and atmospheric effects, all of which are difficult to measure, or from the map matching process. Consequently, an error in the positioning information or map matching process may lead to inaccurate determination of a vehicle’s location. Thus, the integrity is require when measuring both vehicle’s positioning and other related information such as speed, to locate the vehicle in the correct road segment, and avoid errors. The integrity algorithm for the navigation system should include a guarantee that the systems do not produce misleading or faulty information; as this may lead to a significant error arising in the ITS services. Hence, to achieve the integrity requirement a navigation system should have a robust mechanism, to notify the user of any potential errors in the navigation information. The main aim of this research is to develop a robust and reliable mechanism to support the positioning requirement of ITS services. This can be achieved by developing a high integrity GPS monitoring algorithm with the consideration of speed, based on the concept of context-awareness which can be applied with real time ITS services to adapt changes in the integrity status of the navigation system. Context-aware architecture is designed to collect contextual information about the vehicle, including location, speed and heading, reasoning about its integrity and reactions based on the information acquired. In this research, three phases of integrity checks are developed. These are, (i) positioning integrity, (ii) speed integrity, and (iii) map matching integrity. Each phase uses different techniques to examine the consistency of the GPS information. A receiver autonomous integrity monitoring (RAIM) algorithm is used to measure the quality of the GPS positioning data. GPS Doppler information is used to check the integrity of vehicle’s speed, adding a new layer of integrity and improving the performance of the map matching process. The final phase in the integrity algorithm is intended to verify the integrity of the map matching process. In this phase, fuzzy logic is also used to measure the integrity level, which guarantees the validity and integrity of the map matching results. This algorithm is implemented successfully, examined using real field data. In addition, a true reference vehicle is used to determine the reliability and validity of the output. The results show that the new integrity algorithm has the capability to support a various types of location-based ITS services.
284

Optimisation Of Ionospheric Scintillation Model Used In Radio Occultation

Boryczko, Marta, Dziendziel, Tomasz January 2016 (has links)
This thesis is executed in cooperation with RUAG Space AB, which specializes in highly reliable on-board satellite equipment. The thesis focuses on the effect, which disturbs the amplitude and phase of a Global Positioning System (GPS) signal, called scintillation effect. It has a substantial impact on a GPS signal, during Radio Occultation (RO). RO is a method of analysis of a refracted signal which passes through the atmosphere. RO can be used for measuring climate change and for weather forecasting. By retrieving the bending angle of a GPS signal, three basic parameters of the Earth’s atmosphere can be obtained at different heights: temperature, pressure and humidity. As the scintillation effect causes prominent errors in the bending angle calculations, it is crucial to provide possibly the most precise mathematical model, which allows to conceive proper ionospheric corrections. In this thesis, the model using Rytov approach is implemented and optimised with different optimisation functions. It is shown that the scintillation model can be optimized, which may contribute to a more accurate retrieval of the atmospheric profiles.
285

Personal Positioning and Navigation System Based on GPS

Song, Yajun, Zhang, Qishan 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Global Positioning System (GPS) is a very accurate, all-weather, world wide three dimensional navigation system and it has been used in almost every field related to positioning and navigation. This paper presents a new application of GPS technology - personal positioning and navigation system. It combines VP ONCORE receiver OEM (Original Equipment Manufacture) board and an intelligent system controller, with a keyboard and a programmable LCD as its peripherals. This system can realize rich navigation functions and satisfy the need of personal use.
286

HOW TO USE RBDS TO TRANSMIT DGPS CORRECTION MESSAGE

Shengxi, Ding, Qishan, Zhang, Junfeng, Li, Dayi, Zheng 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / This paper introduces the frequency spectrum characteristic of FM radio broadcast and the message format of RBDS (Radio Broadcast Data System). DGPS correction message in RBDS is described in detail. A design method of RBDS/DGPS system is proposed and the RBDS/DGPS system developed by us is introduced. Finally, some special advantages of RBDS/DGPS system are given.
287

PHASE CENTER MEASUREMENTS FOR A WRAP-AROUND GPS ANTENNA

Meyer, Steven J., Kujiraoka, Scott R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Global Positioning System (GPS) technology is being used as a sensor in telemetry systems to provide time, space and position information (TSPI) as well as end game or vector scoring. The accuracy of these measurements depends on precisely locating the phase center of the GPS antenna. A procedure has not currently been addressed by anyone to measure the phase center of a conformal wrap-around GPS antenna. This paper will discuss some techniques on determining the antenna phase center.
288

PHASE CENTER PROBLEMS WITH WRAP-AROUND ANTENNAS

Meyer, Steven J., Kujiraoka, Scott R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The Joint Advanced Missile Instrumentation (JAMI) program is integrating Global Positioning System (GPS) technology into missile telemetry systems. The weakest link appears to be the GPS antenna. The antenna on a missile is required to be flush mounted for aerodynamic reasons. Due to the missile’s tendency to roll, the antenna needs to be a multi-element omnidirectional antenna array. Therefore an antenna used on missiles is a wrap-around antenna since it will meet the flush mount and rolling requirements by giving omnidirectional coverage. JAMI has used readily available techniques for designing wrap-around telemetry antennas to develop a GPS wrap-around antenna and has discovered a major problem. The Phase Center of a wrap-around antenna tends to be a surface, not a point, and not necessarily at the centerline of the missile body. GPS measurements have been conducted to determine the Phase Center of the antenna. When the Phase Center is large, the GPS receiver perceives it as multipath and integer ambiguities cannot be resolved. This paper addresses the problems that have been uncovered and outlines the steps that are planned to resolve them.
289

THE STUDY OF EMBEDDED INTELLIGENT VEHICLE NAVIGATION SYSTEM*

Shengxi, Ding, Bo, Zhang, Jingchang, Tan, Dayi, Zeng 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The intelligent vehicle navigation system is the multifunctional and complex integrate system that involved in auto positioning technology, geography information system and digital map database, computer technology, multimedia and wireless communication technology. In this paper, the autonomous navigation system based on the embedded hardware and embedded software platform is proposed. The system has advantages of low cost, low power consumption, multifunction and high stability and reliability.
290

TEST AND TRAINING ACTIVITIES IN THE SYNTHETIC BATTLEFIELD

Lettiere, Christopher, Raimondo, Nat 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The U.S. Air Force has developed GPS-based instrumentation systems to support both test and training activities. In support of recent large-scale exercises, interfaces were developed to employ existing test and training assets in a synthetic battlefield. The writers propose exploration of similar approaches to overcome the challenge of developing a common approach to test and training instrumentation.

Page generated in 0.1108 seconds