Spelling suggestions: "subject:"positionnement multidimensionnelle"" "subject:"positionnement multidimensional""
1 |
Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis / Algorithmes hiérarchiques rapides pour l’approximation de rang faible des matrices, applications à la physique des matériaux, la géostatistique et l’analyse de donnéesBlanchard, Pierre 16 February 2017 (has links)
Les techniques avancées pour l’approximation de rang faible des matrices sont des outils de réduction de dimension fondamentaux pour un grand nombre de domaines du calcul scientifique. Les approches hiérarchiques comme les matrices H2, en particulier la méthode multipôle rapide (FMM), bénéficient de la structure de rang faible par bloc de certaines matrices pour réduire le coût de calcul de problèmes d’interactions à n-corps en O(n) opérations au lieu de O(n2). Afin de mieux traiter des noyaux d’interaction complexes de plusieurs natures, des formulations FMM dites ”kernel-independent” ont récemment vu le jour, telles que les FMM basées sur l’interpolation polynomiale. Cependant elles deviennent très coûteuses pour les noyaux tensoriels à fortes dimensions, c’est pourquoi nous avons développé une nouvelle formulation FMM efficace basée sur l’interpolation polynomiale, appelée Uniform FMM. Cette méthode a été implémentée dans la bibliothèque parallèle ScalFMM et repose sur une grille d’interpolation régulière et la transformée de Fourier rapide (FFT). Ses performances et sa précision ont été comparées à celles de la FMM par interpolation de Chebyshev. Des simulations numériques sur des cas tests artificiels ont montré que la perte de précision induite par le schéma d’interpolation était largement compensées par le gain de performance apporté par la FFT. Dans un premier temps, nous avons étendu les FMM basées sur grille de Chebyshev et sur grille régulière au calcul des champs élastiques isotropes mis en jeu dans des simulations de Dynamique des Dislocations (DD). Dans un second temps, nous avons utilisé notre nouvelle FMM pour accélérer une factorisation SVD de rang r par projection aléatoire et ainsi permettre de générer efficacement des champs Gaussiens aléatoires sur de grandes grilles hétérogènes. Pour finir, nous avons développé un algorithme de réduction de dimension basé sur la projection aléatoire dense afin d’étudier de nouvelles façons de caractériser la biodiversité, à savoir d’un point de vue géométrique. / Advanced techniques for the low-rank approximation of matrices are crucial dimension reduction tools in many domains of modern scientific computing. Hierarchical approaches like H2-matrices, in particular the Fast Multipole Method (FMM), benefit from the block low-rank structure of certain matrices to reduce the cost of computing n-body problems to O(n) operations instead of O(n2). In order to better deal with kernels of various kinds, kernel independent FMM formulations have recently arisen such as polynomial interpolation based FMM. However, they are hardly tractable to high dimensional tensorial kernels, therefore we designed a new highly efficient interpolation based FMM, called the Uniform FMM, and implemented it in the parallel library ScalFMM. The method relies on an equispaced interpolation grid and the Fast Fourier Transform (FFT). Performance and accuracy were compared with the Chebyshev interpolation based FMM. Numerical experiments on artificial benchmarks showed that the loss of accuracy induced by the interpolation scheme was largely compensated by the FFT optimization. First of all, we extended both interpolation based FMM to the computation of the isotropic elastic fields involved in Dislocation Dynamics (DD) simulations. Second of all, we used our new FMM algorithm to accelerate a rank-r Randomized SVD and thus efficiently generate multivariate Gaussian random variables on large heterogeneous grids in O(n) operations. Finally, we designed a new efficient dimensionality reduction algorithm based on dense random projection in order to investigate new ways of characterizing the biodiversity, namely from a geometric point of view.
|
2 |
Reconnaissance des actions humaines : méthode basée sur la réduction de dimensionnalité par MDS spatio-temporelleChorfi Belhadj, Lilia 08 1900 (has links)
L’action humaine dans une séquence vidéo peut être considérée comme un volume spatio-
temporel induit par la concaténation de silhouettes dans le temps. Nous présentons une
approche spatio-temporelle pour la reconnaissance d’actions humaines qui exploite des
caractéristiques globales générées par la technique de réduction de dimensionnalité MDS
et un découpage en sous-blocs afin de modéliser la dynamique des actions. L’objectif
est de fournir une méthode à la fois simple, peu dispendieuse et robuste permettant la
reconnaissance d’actions simples. Le procédé est rapide, ne nécessite aucun alignement
de vidéo, et est applicable à de nombreux scénarios. En outre, nous démontrons la
robustesse de notre méthode face aux occultations partielles, aux déformations de
formes, aux changements d’échelle et d’angles de vue, aux irrégularités dans l’exécution
d’une action, et à une faible résolution. / Human action in a video sequence can be seen as a space-time volume induced by the
concatenation of silhouettes in time. We present a space-time approach for human
action recognition, which exploits global characteristics generated by the technique
of dimensionality reduction MDS and a cube division into sub-blocks to model the
dynamics of the actions. The objective is to provide a method that is simple, inexpensive
and robust allowing simple action recognition. The process is fast, does not require
video alignment, and is applicable in many scenarios. Moreover, we demonstrate
the robustness of our method to partial occlusion, deformation of shapes, significant
changes in scale and viewpoint, irregularities in the performance of an action, and
low-quality video.
|
3 |
Classification, réduction de dimensionnalité et réseaux de neurones : données massives et science des donnéesSow, Aboubakry Moussa January 2020 (has links) (PDF)
No description available.
|
4 |
Evaluating perceptual maps of asymmetries for gait symmetry quantification and pathology detectionMoevus, Antoine 12 1900 (has links)
Le mouvement de la marche est un processus essentiel de l'activité
humaine et aussi le résultat de nombreuses interactions collaboratives
entre les systèmes neurologiques, articulaires et
musculo-squelettiques fonctionnant ensemble efficacement. Ceci
explique pourquoi une analyse de la marche est aujourd'hui de plus en
plus utilisée pour le diagnostic (et aussi la prévention) de
différents types de maladies (neurologiques, musculaires,
orthopédique, etc.). Ce rapport présente une nouvelle méthode pour
visualiser rapidement les différentes parties du corps humain liées à
une possible asymétrie (temporellement invariante par translation)
existant dans la démarche d'un patient pour une possible utilisation
clinique quotidienne. L'objectif est de fournir une méthode à la fois
facile et peu dispendieuse permettant la mesure et l'affichage visuel,
d'une manière intuitive et perceptive, des différentes parties
asymétriques d'une démarche. La méthode proposée repose sur
l'utilisation d'un capteur de profondeur peu dispendieux (la Kinect)
qui est très bien adaptée pour un diagnostique rapide effectué dans de
petites salles médicales car ce capteur est d'une part facile à
installer et ne nécessitant aucun marqueur. L'algorithme que nous
allons présenter est basé sur le fait que la marche saine possède des
propriétés de symétrie (relativement à une invariance temporelle) dans
le plan coronal. / The gait movement is an essential process of the human activity and
also the result of coordinated effort between the neurological,
articular and musculoskeletal systems. This motivates why gait
analysis is important and also increasingly used nowadays for the
(possible early) diagnosis of many different types (neurological,
muscular, orthopedic, etc.) of diseases. This paper introduces a
novel method to quickly visualize the different parts of the body
related to an asymmetric movement in the human gait of a patient for
daily clinical. The goal is to provide a cheap and easy-to-use method
to measure the gait asymmetry and display results in a perceptually
relevant manner. This method relies on an affordable consumer depth
sensor, the Kinect. The Kinect was chosen because this device is
amenable for use in small, confined area, like a living room. Also,
since it is marker-less, it provides a fast non-invasive diagnostic.
The algorithm we are going to introduce relies on the fact that a
healthy walk has (temporally shift-invariant) symmetry properties in
the coronal plane.
|
Page generated in 0.208 seconds