• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 15
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Temporal Variation In Aerosol Composition At Northwestern Turkey

Genc Tokgoz, D. Deniz 01 February 2013 (has links) (PDF)
Daily aerosol samples (PM) were collected at a rural station, which is 5 km away from the Turkish-Bulgarian border between April 2006 and March 2008. Aerosol samples were analyzed for elements by ICPMS, ions by IC and black carbon by aethalometer to provide a multi-species aerosol data set, which can represent aerosol population for Northwestern Turkey and Eastern Europe. Average concentration of SO42-, NO3- and NH4+ was 5.8, 2.9 and 2.0 &mu / g m-3, respectively, while total aerosol mass was 66 &mu / g m-3. Seasonal variation of crustal species had maxima in summer, while most of the anthropogenic species had maxima in winter. Rainfall was found as the only local meteorological parameter affecting aerosols concentrations. The dominant sectors of air masses arriving the Northwestern Turkey were northeast in summer and west-northwest in winter. Air masses were classified into five clusters regarding their wind speed and direction. Most species indicated significant differences between clusters. The influence of forest fires in Ukraine and Russian Federation was identified by cluster analysis using soluble K as tracer. Source apportionment of PM was carried out by EPA PMF model and five sources were resolved. Crustal emissions were found to be the major contributor to PM (41%). The second largest source was distant anthropogenic sources with a contribution of 26%. Traffic was also a remarkable source with 16% contribution. Sea salt and stationary combustion sources accounted for 9% and 8% of PM, respectively. Potential source regions of resolved sources were determined by potential source contribution function (PSCF).
12

Impact of residential wood combustion on urban air quality

Krecl, Patricia January 2008 (has links)
<p>Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment.</p><p>A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations.</p><p>These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.</p>
13

Impact of residential wood combustion on urban air quality

Krecl, Patricia January 2008 (has links)
Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment. A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations. These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.
14

Chemical Composition Of Atmospheric Particles In The Aegean Region

Munzur, Basak 01 February 2008 (has links) (PDF)
Daily aerosol samples were collected at the &Ccedil / andarli which is located on Aegean coast of Turkey. A rural site was selected to monitor atmospheric pollution by long range transport. Sampling was performed in both summer and winter seasons, and in total 151 samples were obtained. Concentrations of elements in the samples were measured in order to identify sources and possible source locations of pollutants. Measured concentrations of trace elements at the &Ccedil / andarli station were compared with those measured at various sites around the world and, also in Turkey. As a result of comparison, level of pollution at the Aegean Region was found to be lower than the Mediterranean Region and Black Sea Region. Air flow climatology at &Ccedil / andarli was investigated in order to determine potential source regions for pollutants. Frequency of air flows from Russia and Western Europe are higher suggesting that emissions from these industrial regions affect the chemical composition of particulate matter. Besides these, it was concluded that contributions from Central and Eastern European countries are significantly high because of frequent air mass transport. Concentrations of elements measured at &Ccedil / andarli station were found to show short and seasonal variations. Such variations in concentrations are explained by variations in the source strengths and transport patterns. Positive matrix factorization (PMF) was applied to determine sources of elements and contribution of sources to each element. This analysis revealed 5 sources, two local anthropogenic emissions factor, one soil factor, one sea salt factor and one long range transport factor. Distribution of Potential Source Contribution Function (PSCF) values showed that main sources of SO42- are observed in Bulgaria, Romania, Poland, Ukraine and central part of Aegean region.
15

Composition Of Atmosphere At The Central Anatolia

Yoruk, Ebru 01 January 2004 (has links) (PDF)
Concentrations of elements and ions measured in samples collected between February 1993 and December 2000 at a rural site in central Anatolia were investigated to evaluate the chemical composition of atmosphere at central Anatolia, to determine pollution level of the region, to study temporal variability of the pollutants and to investigate the sources and source regions of air pollutants in the region. Level of pollution at central Anatolia was found to be lower than the pollution level at other European countries and Mediterranean and Black Sea regions of Turkey. Enrichment factor calculations revealed that SO42-, Pb and Ca are highly enriched in the aerosol / whereas, soil component has dominating contribution on observed concentrations of V, Mg, Ca and K. SO42-/(SO2+SO42-) ratio observed in &Ccedil / ubuk station indicates that contribution of distant sources is more important than the contribution of local sources on observed SO42- levels. SO42-/NO3- ratio calculations showed that Central Anatolia is receipt of SO42- from Eastern European countries. Positive Matrix Factorization (PMF) analysis revealed 6 source groups, namely motor vehicle source, mixed urban factor, long range transport factor, soil factor, NO3- factor and Cd factor. Distribution of Potential Source Contribution Function (PSCF) values showed that main source areas of SO42-, NH4+ and Cd are western parts of Turkey, Balkan countries, central and western Europe, central Russian Federation and north of Sweden and Finland / NO3- are the regions located around the Mediterranean Sea / and there is no very strong potential source area observed for NH3 and Pb.
16

Investigation Of 8-year-long Composition Record In The Eastern Mediterranean Precipitation

Isikdemir, Ozlem 01 January 2006 (has links) (PDF)
Measurement of chemical composition of precipitation is important both to understand acidification of terrestrial and aquatic ecosystems and neutralization process in the atmosphere. Such data are scarce in the Mediterranean region. In this study, chemical composition of daily, wet-only, 387 number of rain water samples collected between 1991 and 1999 were investigated to determine levels, temporal variation and long-term trends in concentrations of major ions and trace elements between 1991 and 1999. Samples had already been collected and some of the analysis had been completed. The anions SO42-, NO3- and Cl- were analyzed by HPLC coupled with UV-VIS detector, NH4+ was analyzed by colorimetry and H+ ion was analyzed by pH meter. The major ions and trace metals were analyzed by using Atomic Absorption Spectrometry (AAS) and Graphite Furnace Atomic Absorption Spectrometry (GFAAS). In this study complete data set were generated by analyzing samples that had not been previously analyzed for major ions and trace elements with Inductively Coupled Plasma with Optical Emission Spectrometry (ICP-OES). Statistical tools were used to determine the distribution of the pollutants. The rain water data tends to be log-normally distributed since data show large variations due to meteorological conditions, physical and chemical transformations and air mass transport patterns. The median pH of the rain water was found to be 5.29, which indicates that the rain water is not strongly acidic. This case is not a result of lacking of acidic compounds but rather indicates extended neutralization process in rain water. Eastern Mediterranean atmosphere is under the influence of three general source types: (1) anthropogenic sources, which are located to the north and northwest of the basin brings low pH values to the region (SO42-, NO3- ions) / (2) a strong crustal source, which is dried and suspended local soil and air masses transported from North Africa transport which have high pH values (Ca2+, Al, Fe ions) and (3) a marine source, which is the Mediterranean Sea itself (Na+, Cl- ions). In the region, the main acid forming compounds are H2SO4 and HNO3 whereas / CaCO3 and NH3 are responsible for the neutralization process. To describe the level of pollutant concentrations and the factors that affect their variations in rain water / ion compositions, neutralization of acidity, short and long-term variability of ions and elements, their time trend analysis and wet deposition fluxes were investigated briefly. Positive matrix factorization (PMF) was used to determine components of ionic mass in the precipitation. In Antalya Station the rain water has five factors: free acidity factor, crustal factor, marine factor, NO3- factor and SO42- factor. Potential Source Contribution Function (PSCF) and trajectory statistics were used to determine source regions generating these components. NO3- has potential source regions of Western Mediterranean countries and North Africa, whereas SO42- has additional southeasterly trajectory components of Israel and south east of Turkey.
17

Avaliação do uso de diferentes modelos receptores com dados de PM2,5: balanço químico de massa (BQM) e fatoração de matriz positiva (FMP)

Trindade, Camila Carnielli 13 March 2009 (has links)
Made available in DSpace on 2016-12-23T14:04:31Z (GMT). No. of bitstreams: 1 dissertacao Trindade.pdf: 2131237 bytes, checksum: 514907f9bd367cc5bd486dcd27fa2d9d (MD5) Previous issue date: 2009-03-13 / A identificação de fontes para material particulado tem sido um tema de crescente interesse em todo o mundo para auxiliar a gestão da qualidade do ar. Esta classe de estudos é convencionalmente baseada no uso de modelos receptores, que identificam e quantificam as fontes responsáveis a partir da concentração do contaminante no receptor. Existe uma variedade de modelos receptores disponíveis na literatura, este trabalho compara os resultados dos modelos receptores balanço químico de massa (BQM) e fatoração de matriz positiva (FMP) para o banco de dados de PM2,5, da região de Brighton, Colorado, com o intuito de investigar as dificuldades na utilização de cada modelo, bem como suas vantagens e desvantagens. Inicialmente, já é conhecido que o modelo BQM tem a desvantagem de necessitar dos perfis das fontes, determinados experimentalmente, para ser aplicado e também tem limitações quando as fontes envolvidas são similares. Já o modelo FMP não requer os perfis de fontes, mas tem a desvantagem de precisar de elevada quantidade amostral da concentração do contaminante no receptor. Os resultados mostraram, baseados nas medidas de performance que os dois modelos foram aptos para reproduzir os dados do receptor com ajustes aceitáveis. Todavia, resultados diferentes se ajustaram a medidas de performance. O modelo BQM, utilizou 9 tipos de fontes e o modelo FMP encontrou apenas 6 tipos de fontes. Constatou-se com isso que o modelo FMP tem dificuldades em modelar fontes que aparecem ocasionalmente. As fontes sulfato de amônio, solos, veículos a diesel e nitrato de amônio tiverem boas correlações nos resultados dos dois modelos de contribuições de fontes. Os perfis de fontes utilizados no modelo BQM e resultados do modelo FMP que mais se assimilaram foram das fontes nitrato de amônio, solos, sulfato de amônio e combustão de madeira e ou/ veículos desregulados. Verificou-se no modelo FMP que as espécies não características de determinadas fontes aparecem nos resultados dos perfis das fontes, o que torna-se ainda mais complexo a identificação das fontes, requerendo elevado conhecimento sobre a composição de inúmeras fontes. / The identification of sources of particulate matter has been a topic of growing interest throughout the world to assist the air quality management. This class of studies is conventionally based on the use of receptor models, which identify and quantify the sources responsible from the concentration of the contaminant in the receptor. There are a variety of receptor models, this study compares the results of chemical mass balance (CMB) and positive matrix factorization (PMF) models for a database of PM2.5, for the region of Brighton, Colorado, with a view to investigate the difficulties in the use of each model, as well as its advantages and disadvantages. It is known that the CMB model has the disadvantage of requiring source profiles, determined experimentally, to be applied and also has limitations when the sources involved are similar. On the other hand, the PMF model does not require source profiles, it has the disadvantage to require a large amount sample, in receptor. The results showed, based on performance measures that both models were able to reproduce the data of the receptor with reasonable fit. However, different results were adjusted for performance measurements. The CMB model, used 9 types of sources and PMF model found only 6 types of sources, it was noted by that what the PMF model has difficulty in modeling sources that appear occasionally. The sources ammonium sulfate, soil, diesel vehicles and ammonium nitrate have good correlation in the results of the two model of sources apportionment. The source profiles used in the CMB model and results of the PMF model that present more similarities were of the sources ammonium nitrate, soil, ammonium sulfate and combustion of wood and/or smoker vehicles. It was verified what the PMF model does not separate well species in the source profiles, therefore becomes even more complex to identify the sources in the FMP model, requiring considerable knowledge about the composition of many sources. For the database used with similar sources, the lack of confidence in the results based only on receptors models for a final decision on the source apportionment.
18

Investigation Of Short And Long Term Trends In The Eastern Mediterranean Aerosol Composition

Ozturk, Fatma 01 January 2009 (has links) (PDF)
Approximately 2000 daily aerosol samples were collected at Antalya (30&deg / 34&amp / #900 / 30.54 E, 36&deg / 47&amp / #8217 / 30.54N) on the Mediterranean coast of Turkey between 1993 and 2001. High volume PM10 sampler was used for the collection of samples on Whatman&amp / #8211 / 41 filters. Collected samples were analyzed by a combination of analytical techniques. Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Mass Spectrometry (ICPMS) was used to measure trace element content of the collected samples from Li to U. Major ions, namely, SO42- and NO3-, were determined by employing Ion Chromatography (IC). Samples were analyzed in terms of their NH4+ contents by means of Colorimetry. Evaluation of short term trends of measured parameters have been shown that elements with marine and crustal origin are more episodic as compared to anthropogenic ones. Most of the parameters showed well defined seasonal cycles, for example, concentrations of crustal elements increased in summer season while winter concentrations of marine elements were considerably higher than associated values for summer. Seasonal Kendall statistic depicted that there was a decreasing trend for crustal elements such as Be, Co, Al, Na, Mg, K, Dy, Ho, Tm, Cs and Eu. Lead, As, Se and Ge were the anhtropogenic elements that decreasing trend was detected in the course of study period. Cluster and Residence time analysis were performed to find the origin of air masses arrving to Eastern Mediterranena Basin. It has been found that air masses reaching to our station resided more on Balkans and Eastern Europe. Positive Matrix Factorization (PMF) resolved eight factors influencing the chemical composition of Eastern Mediterranean aerosols as local dust, Saharan dust, oil combustion, coal combustion, crustal-anthropogenic mixed, sea salt, motor vehicle emission, and local Sb factor.
19

Comparison Of The Rural Atmosphere Aerosol Compositions At Different Parts Of Turkey

Dogan, Guray 01 January 2005 (has links) (PDF)
Long term data generated at four rural stations are compared to determine similarities and differences in aerosol compositions and factors contributing to observed differences at different regions in Turkey. The stations used in this study are located at Mediterranean coast (20 km to the west of Antalya city), Black Sea coast (20 km to the east of Amasra town), Central Anatolia (&Ccedil / ubuk, Ankara) and Northeastern part of the Anatolian Plateau (at Mt. Uludag). Data used in comparisons were generated in previous studies. However, some re-analysis of data were also performed / (1) to improve the similarities of the parameters compared and (2) to be able to apply recently-developed methodologies to data sets. Data from Mediterranean and Black Sea stations were identical in terms of parameters measured and were suitable for extensive comparison. However, fewer parameters were measured at &Ccedil / ubuk and Uludag stations, which limited the comparisons involving these two stations. Comparison included levels of major ions and elements, short-term and seasonal variations in concentrations, background (baseline) concentrations of elements, flow climatology of regions, correlations between elements, potential source areas affecting regions, and source types affecting chemical composition of particles. Comparison of levels of measured parameters in four regions showed that there are some differences in concentrations that arise from differences in the local characteristics of the sampling points. For example very high concentrations of elements such as Na and Cl in the Mediterranean region is attributed to closer proximity of the Antalya station to coast and not a general feature of the Mediterranean aerosol. There are also significant regional differences in the concentrations of measured elements and ions as well. Concentrations of anthropogenic elements are very similar at two coastal stations (Antalya and Amasra), but they are approximately a factor of two smaller at the two stations that are located on the Anatolian Plateau. This difference between coastal and high altitude plateau stations, which is common to all anthropogenic species, is attributed to different source regions and transport mechanisms influencing coastal regions and Anatolian Plateau. Some statistically significant differences were also observed in the temporal variations of elements and ions measured in different stations. The elements with crustal origin showed similar seasonal pattern at all stations, with higher concentrations in summer and lower concentrations in winter. This difference between summer and winter is attributed to suppression of re-suspension of crustal aerosol from wet or ice-covered surface soil in winter. Concentrations of anthropogenic elements, on the other hand, did not show a statistically significant seasonal trend at Amasra, &Ccedil / ubuk and Uludag stations, but they have higher concentrations during summer months at the Antalya station. This difference between Mediterranean aerosol and aerosol at the Central and Northern Turkey is due to influence of more local sources on &Ccedil / ubuk, Amasra and Uludag stations and domination of more distant source in determining aerosol composition at the Mediterranean region. A similar conclusion of strong influence of local sources on chemical composition of particles at the Central Anatolia was also suggested by the comparison of baseline concentrations in each station. General features in flow climatology (residence times of upper atmospheric air masses) in each region are found to be similar with more frequent flow from W, WNW, NW and NNW wind sectors. Since these are the sectors that include high emitting countries in Eastern and Western Europe and Russia, transport from these sectors are expected to bring pollution from both distant European countries and more local Balkan countries and western parts of Turkey. Flow climatology in stations showed small, but statistically significant, differences between summer and winter seasons. These variations suggested that the station at the Central Anatolia and Black Sea (&Ccedil / ubuk Amasra and Uludag stations) are affected from sources located at the Western Europe in winter season and from sources located at the Eastern Europe in summer. Mediterranean aerosol, on the other hand, are affected from sources at the Western Europe and do not show any seasonal differences. This variation in flow climatology between summer and winter seasons (and lack of variation at the Mediterranean station) is supported by the seasonal variation (and lack of variation at the Mediterranean station) in SO42-/NO3- ratio measured at the stations. Potential source contribution function (PSCF) values are calculated for selected elements and ions in each station. Statistical significance of calculated PSCF values is tested using bootstrapping technique. Results showed that specific grids at Russia and at Balkan countries are common source regions affecting concentrations of anthropogenic elements at all four regions in Turkey. However, each station is also affected from specific source regions as well. Aerosol composition at the Anatolian Plateau are affected from sources closer to the sampling points whereas Mediterranean and Black Sea aerosol are affected from source regions that farther away from the receptors. It should be noted that the same conclusion is also reached in comparison of seasonal patterns and baseline concentrations at these stations. Types of sources affecting aerosol composition at Black Sea, Mediterranean and Central Anatolia are also compared. Source types affecting atmospheric composition in these regions were calculated using positive matrix factorization (PMF). The results showed that aerosol at the Black Sea, Central Anatolia and Mediterranean atmosphere consists of 8, 6 and 7 components, respectively. Two of these components, namely a crustal component and a long-range transport component are common in all three stations. The chemical compositions of these common components are shown to the same within 95% statistical significance interval. Three factors, namely a fertilizer factor, which is highly enriched in NH4+ ion, a sea salt component and an arsenic factor are common in the Mediterranean and Black Sea aerosol but not observed at the Central Anatolia. Other factors found in the regions are specific for that region.
20

Identification of Sources of Air Pollution Using Novel Analytical Techniques and Instruments

Bhardwaj, Nitish 31 March 2022 (has links)
This dissertation is a collection of studies that investigates the issue of air pollution in the field of environmental chemistry. My thesis consists of research works done to measure the concentration of particulate matter (PM) and gas-phase species in ambient air. High concentrations of PM is a significant problem in Utah and in other regions of the world. Particles having an aerodynamic diameter of 2.5 micrometers and smaller play a crucial role in air pollution and pose serious health risks when inhaled. PM is composed of both organic and inorganic components. The organic fraction in PM ranges from 10-90% of the total particle mass. Several methods have been employed to measure the organic fraction of PM, but these techniques require extensive laboratory analysis, expensive bench top equipment, and do a poor job of capturing diurnal variations of the concentrations of ambient organic compounds. The Hansen Lab has developed a new instrument called the Organic Aerosol Monitor (OAM) which is based on gas chromatography followed by mass spectrometry detection platform for measuring the carbonaceous component of PM2.5 on an hourly averaged basis. Organic marker data collected in 2016 using the OAM was used in a Positive Matrix Factorization (PMF) analysis to identify the sources of PM in West Valley City, Utah. Additionally, data was collected in Richfield and Vernal, UT in 2017 - 2018 to quantitatively monitor the composition of organic markers of PM2.5. Some previously unidentified organic compounds in PM were successfully identified during this study, including terpenes, polycyclic aromatic hydrocarbons (PAHs), diethyl phthalate, some herbicides, and pesticides. Gas-phase species play a significant role in driving the formation of air pollutants in Earth's atmosphere. Traditional gas detection methods do not provide high temporally and spatially resolved data; therefore, it becomes important to detect and measure gas-phase species both qualitatively and quantitatively to better understand the sources of air pollution. An incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) combines a broadband incoherent light source, a stable optical cavity formed by two highly reflective mirrors and a charged-coupled device (CCD) detector to quantitatively measure the gas-phase compounds present in the atmosphere. The concentrations of formaldehyde (HCHO) were measured using IBBCEAS to investigate the sources of this hydrocarbon in Bountiful, Utah during 2019. Another important species is OH radical. It is one of the most predominant oxidizing species present in the atmosphere. It is found in low concentrations, 0.1 ppt. Detecting concentrations this low is challenging. A new IBBCEAS instrument has been designed and elements of this instrument were tested by measuring the OH overtones in a variety of short chained alcohols. A set of experiments were conducted to measure the absorption cross-sections for the 5th and 6th OH vibrational overtones in a series of short chained alcohols by IBBCEAS. Because OH radical's lowest energy electronic state occurs in the same wavelength region (i.e., 308 nm) that SO2 absorbs (300-310 nm), a study was conducted in which the concentrations of SO2 were measured using an IBBCEAS and compared with a commercially available SO2 monitor.

Page generated in 0.1227 seconds