Spelling suggestions: "subject:"2positive matrix"" "subject:"0positive matrix""
11 |
Impact of residential wood combustion on urban air qualityKrecl, Patricia January 2008 (has links)
<p>Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment.</p><p>A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations.</p><p>These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.</p>
|
12 |
Impact of residential wood combustion on urban air qualityKrecl, Patricia January 2008 (has links)
Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment. A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations. These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.
|
13 |
Chemical Composition Of Atmospheric Particles In The Aegean RegionMunzur, Basak 01 February 2008 (has links) (PDF)
Daily aerosol samples were collected at the Ç / andarli which is located on Aegean coast of Turkey. A rural site was selected to monitor atmospheric pollution by long range transport. Sampling was performed in both summer and winter seasons, and in total 151 samples were obtained. Concentrations of elements in the samples were measured in order to identify sources and possible source locations of pollutants.
Measured concentrations of trace elements at the Ç / andarli station were compared with those measured at various sites around the world and, also in Turkey. As a result of comparison, level of pollution at the Aegean Region was found to be lower than the Mediterranean Region and Black Sea Region.
Air flow climatology at Ç / andarli was investigated in order to determine potential source regions for pollutants. Frequency of air flows from Russia and Western Europe are higher suggesting that emissions from these industrial regions affect the chemical composition of particulate matter. Besides these, it was concluded that contributions from Central and Eastern European countries are significantly high because of frequent air mass transport.
Concentrations of elements measured at Ç / andarli station were found to show short and seasonal variations. Such variations in concentrations are explained by variations in the source strengths and transport patterns.
Positive matrix factorization (PMF) was applied to determine sources of elements and contribution of sources to each element. This analysis revealed 5 sources, two local anthropogenic emissions factor, one soil factor, one sea salt factor and one long range transport factor.
Distribution of Potential Source Contribution Function (PSCF) values showed that main sources of SO42- are observed in Bulgaria, Romania, Poland, Ukraine and central part of Aegean region.
|
14 |
Continuous real-time measurement of the chemical composition of atmospheric particles in Greece using aerosol mass spectrometryΦλώρου, Καλλιόπη 04 November 2014 (has links)
Atmospheric aerosol is an important component of our atmosphere influencing human health, regional and global atmospheric chemistry and climate. The organic component of submicron aerosol contributes around 50% of its mass and is a complex mixture of tens of thousands of compounds. Real-time aerosol mass spectrometry was the major measurement tool used in this work. The Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) can quantitatively measure the chemical composition and size distribution of non-refractory submicron aerosol (NR-PM1). The mass spectra provided by the instrument every few minutes contain information about aerosol sources and processes. This thesis uses the HR-ToF-AMS measurements in two areas of Greece to quantify the contributions of organic aerosol sources to the corresponding organic aerosol levels.
Local and regional air pollution sources were monitored and characterized in two sites during intensive campaigns. The first campaign took place during the fall of 2011 (September 24 to October 23) in Finokalia, Crete, a remote-background coastal site without any major human activity. The aim of the study was to quantify the extent of oxidation of the organic aerosol (OA) during autumn, a season neither too hot nor cold, with reduced solar radiation in comparison to summer. The second one took place during the winter of 2012 (February 26 to March 5), in the third major city of Greece, Patras. The measurements were conducted in the campus of the Technological Educational Institute of Patras (TEI), in order to quantify the severity of the wintertime air pollution problem in the area and its sources. The contributions of traffic and residential wood burning were the foci of that study.
The Finokalia site is isolated and far away from anthropogenic sources of pollution, making it ideal for the study of organic aerosol coming from different directions, usually exposed to high levels of atmospheric oxidants. The fine PM measured during the Finokalia Atmospheric Measurement Experiment (FAME-11) by the AMS and a Multi Angle Absorption Photometer (MAAP) was mostly ammonium sulfate and bisulfate (60%), organic compounds (34%), and BC (5%). The aerosol sampled originated mainly from Turkey during the first days of the study, but also from Athens and Northern Greece during the last days of the campaign. By performing Positive Matrix Factorization (PMF) analysis on the AMS organic spectra for the whole dataset the organic aerosol (OA) composition could be explained by two components: a low volatility factor (LV-OOA) and a semi-volatile one (SV-OOA). Hydrocarbon-like organic aerosol (HOA) was not present, consistent with the lack of strong local sources. The second field campaign took place in the suburbs of the city of Patras, 4 km away from the city center during the winter of 2012. During this 10-day campaign, organics were responsible for 70% during the day and 80% during the evening of the total PM1. The OA mean concentration during that period was approximately 20 μg m-3 and reaching hourly maximum values as high as 85 μg m-3. Sulfate ions and black carbon followed with 10% and 7% of the PM1. PMF analysis of the organic mass spectra of PM1 explained the OA observations with four sources: cooking (COA), traffic (HOA), biomass burning (BBOA), and oxygenated aerosol (OOA), related to secondary formation and long range transport. On average, BBOA represented 58% of the total OM, followed by OOA with 18%, COA and HOA, with the last two contributing of the same percentage (12%). / --
|
15 |
Composition Of Atmosphere At The Central AnatoliaYoruk, Ebru 01 January 2004 (has links) (PDF)
Concentrations of elements and ions measured in samples collected between February 1993 and December 2000 at a rural site in central Anatolia were investigated to evaluate the chemical composition of atmosphere at central Anatolia, to determine pollution level of the region, to study temporal variability of the pollutants and to investigate the sources and source regions of air pollutants in the region.
Level of pollution at central Anatolia was found to be lower than the pollution level at other European countries and Mediterranean and Black Sea regions of Turkey.
Enrichment factor calculations revealed that SO42-, Pb and Ca are highly enriched in the aerosol / whereas, soil component has dominating contribution on observed concentrations of V, Mg, Ca and K.
SO42-/(SO2+SO42-) ratio observed in Ç / ubuk station indicates that contribution of distant sources is more important than the contribution of local sources on observed SO42- levels. SO42-/NO3- ratio calculations showed that Central Anatolia is receipt of SO42- from Eastern European countries.
Positive Matrix Factorization (PMF) analysis revealed 6 source groups, namely motor vehicle source, mixed urban factor, long range transport factor, soil factor, NO3- factor and Cd factor.
Distribution of Potential Source Contribution Function (PSCF) values showed that main source areas of SO42-, NH4+ and Cd are western parts of Turkey, Balkan countries, central and western Europe, central Russian Federation and north of Sweden and Finland / NO3- are the regions located around the Mediterranean Sea / and there is no very strong potential source area observed for NH3 and Pb.
|
16 |
Investigation Of 8-year-long Composition Record In The Eastern Mediterranean PrecipitationIsikdemir, Ozlem 01 January 2006 (has links) (PDF)
Measurement of chemical composition of precipitation is important both to understand acidification of terrestrial and aquatic ecosystems and neutralization process in the atmosphere. Such data are scarce in the Mediterranean region. In this study, chemical composition of daily, wet-only, 387 number of rain water samples collected between 1991 and 1999 were investigated to determine levels, temporal variation and long-term trends in concentrations of major ions and trace elements between 1991 and 1999. Samples had already been collected and some of the analysis had been completed. The anions SO42-, NO3- and Cl- were analyzed by HPLC coupled with UV-VIS detector, NH4+ was analyzed by colorimetry and H+ ion was analyzed by pH meter. The major ions and trace metals were analyzed by using Atomic Absorption Spectrometry (AAS) and Graphite Furnace Atomic Absorption Spectrometry (GFAAS). In this study complete data set were generated by analyzing samples that had not been previously analyzed for major ions and trace elements with Inductively Coupled Plasma with Optical Emission Spectrometry (ICP-OES).
Statistical tools were used to determine the distribution of the pollutants. The rain water data tends to be log-normally distributed since data show large variations due to meteorological conditions, physical and chemical transformations and air mass transport patterns. The median pH of the rain water was found to be 5.29, which indicates that the rain water is not strongly acidic. This case is not a result of lacking of acidic compounds but rather indicates extended neutralization process in rain water. Eastern Mediterranean atmosphere is under the influence of three general source types: (1) anthropogenic sources, which are located to the north and northwest of the basin brings low pH values to the region (SO42-, NO3- ions) / (2) a strong crustal source, which is dried and suspended local soil and air masses transported from North Africa transport which have high pH values (Ca2+, Al, Fe ions) and (3) a marine source, which is the Mediterranean Sea itself (Na+, Cl- ions). In the region, the main acid forming compounds are H2SO4 and HNO3 whereas / CaCO3 and NH3 are responsible for the neutralization process.
To describe the level of pollutant concentrations and the factors that affect their variations in rain water / ion compositions, neutralization of acidity, short and long-term variability of ions and elements, their time trend analysis and wet deposition fluxes were investigated briefly. Positive matrix factorization (PMF) was used to determine components of ionic mass in the precipitation. In Antalya Station the rain water has five factors: free acidity factor, crustal factor, marine factor, NO3- factor and SO42- factor. Potential Source Contribution Function (PSCF) and trajectory statistics were used to determine source regions generating these components. NO3- has potential source regions of Western Mediterranean countries and North Africa, whereas SO42- has additional southeasterly trajectory components of Israel and south east of Turkey.
|
17 |
Reconhecimento polinomial de álgebras cluster de tipo finito / Polynomial recognition of cluster algebras of finite typeDias, Elisângela SIlva 09 September 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:17:43Z
No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:30:02Z (GMT) No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-11-03T14:30:02Z (GMT). No. of bitstreams: 2
Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-09-09 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Cluster algebras form a class of commutative algebra, introduced at the beginning of the
millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating
variables (cluster variables) grouped into overlapping subsets (clusters) of fixed
cardinality. Since its inception, the theory of cluster algebras found applications in many
areas of science, specially in mathematics. In this thesis, we study, with computational focus,
the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky
showed that a cluster algebra is of finite type whether the associated graph is cyclically
oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the
skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first,
we studied the two topics independently. Related to the first part of the criteria, we developed
an algorithm that lists all chordless cycles (polynomial on the length of those
cycles) and another that checks whether a graph is cyclically oriented and, if so, list all
their chordless cycles (polynomial on the number of vertices). Related to the second part
of the criteria, we developed some theoretical results and we also developed a polynomial
algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter
algorithm is used to prove that the problem of deciding whether a skew-symmetrizable
matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture
that this problem is in NP-complete class.We show that the same problem belongs
to the class of polynomial problems for cyclically oriented graphs and, finally, we show
that deciding whether a cluster algebra is of finite type also belongs to this class. / As álgebras cluster formam uma classe de álgebras comutativas introduzida no início
do milênio por Fomin e Zelevinsky. Elas são definidas de forma construtiva a partir de
um conjunto de variáveis geradoras (variáveis cluster) agrupadas em subconjuntos sobrepostos
(clusters) de cardinalidade fixa. Desde a sua criação, a teoria das álgebras cluster
encontrou aplicações em diversas áreas da matemática e afins. Nesta tese, estudamos,
com foco computacional, o reconhecimento das álgebras cluster de tipo finito. Em 2006,
Barot, Geiss e Zelevinsky mostraram que uma álgebra cluster é de tipo finito se o grafo
associado é ciclicamente orientado, isto é, todos os ciclos sem corda do grafo são ciclicamente
orientados, e se a matriz antissimetrizável associada possui uma companheira
quase-Cartan positiva. Em um primeiro momento, estudamos os dois tópicos de forma
independente. Em relação à primeira parte do critério, elaboramos um algoritmo que lista
todos os ciclos sem corda (polinomial no tamanho destes ciclos) e outro que verifica se
um grafo é ciclicamente orientado e, em caso positivo, lista todos os seus ciclos sem corda
(polinomial na quantidade de vértices). Relacionado à segunda parte do critério, desenvolvemos
alguns resultados teóricos e elaboramos um algoritmo polinomial que verifica
se uma matriz companheira quase-Cartan é positiva. Este último algoritmo é utilizado
para provar que o problema de decidir se uma matriz antissimetrizável tem uma companheira
quase-Cartan positiva para grafos gerais está na classe NP. Conjecturamos que
este problema pertence à classe NP-completa. Mostramos que o mesmo pertence à classe
de problemas polinomiais para grafos ciclicamente orientados e, por fim, mostramos que
decidir se uma álgebra cluster é de tipo finito também pertence a esta classe.
|
18 |
Characterisation of the chemical properties and behaviour of aerosols in the urban environmentYoung, Dominique Emma January 2014 (has links)
Atmospheric aerosols have adverse effects on human health, air quality, and visibility and frequently result in severe pollution events, particularly in urban areas. However, the sources of aerosols and the processes governing their behaviour in the atmosphere, including those which lead to high concentrations, are not well understood thus limit our ability to accurately assess and forecast air quality. Presented here are the first long-term chemical composition measurements from an urban environment using an Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Organic aerosols (OA) were observed to account for a significant fraction (44%) of the total non-refractory submicron mass during 2012 at the urban background site in North Kensington, London, followed by nitrate (28%), sulphate (14%), ammonium (13%), and chloride (1%). The sources and components of OA were determined using Positive Matrix Factorisation (PMF) and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2), where HOA, COA, and SFOA were observed to be of equal importance across the year. The concentration of secondary OA increased during the summer yet the extent of oxidation, as defined by the oxygen content, showed no variability during the year. The main factors governing the diurnal, monthly, and seasonal trends observed in all organic and inorganic species were meteorological conditions, specific nature of the sources, and availability of precursors. Regional and transboundary pollution influenced total aerosol concentrations and high concentration events were observed to be governed by different factors depending on season. High-Resolution ToF-AMS measurements were used to further probe OA behaviour, where two SFOA factors were derived from PMF analysis in winter, which likely represent differences in burn conditions. In the summer an OA factor was identified, likely of primary origin, which was observed to be strongly associated with organic nitrates and anthropogenic emissions. This work uses instruments and techniques that have not previously been used in this way in an urban environment, where the results further the understanding of the chemical components of urban aerosols. Aerosol sources are likely to change in the future with increases in solid fuel burning as vehicular emissions decrease, with significant implications on air quality and health. Thus it is important to understand aerosol sources and behaviour in order to develop effective pollution abatement strategies.
|
19 |
Avaliação do uso de diferentes modelos receptores com dados de PM2,5: balanço químico de massa (BQM) e fatoração de matriz positiva (FMP)Trindade, Camila Carnielli 13 March 2009 (has links)
Made available in DSpace on 2016-12-23T14:04:31Z (GMT). No. of bitstreams: 1
dissertacao Trindade.pdf: 2131237 bytes, checksum: 514907f9bd367cc5bd486dcd27fa2d9d (MD5)
Previous issue date: 2009-03-13 / A identificação de fontes para material particulado tem sido um tema de crescente interesse em todo o mundo para auxiliar a gestão da qualidade do ar. Esta classe de estudos é convencionalmente baseada no uso de modelos receptores, que identificam e quantificam as fontes responsáveis a partir da concentração do contaminante no receptor. Existe uma variedade de modelos receptores disponíveis na literatura, este trabalho compara os resultados dos modelos receptores balanço químico de massa (BQM) e fatoração de matriz positiva (FMP) para o banco de dados de PM2,5, da região de Brighton, Colorado, com o intuito de investigar as dificuldades na utilização de cada modelo, bem como suas vantagens e desvantagens. Inicialmente, já é conhecido que o modelo BQM tem a desvantagem de necessitar dos perfis das fontes, determinados experimentalmente, para ser aplicado e também tem limitações quando as fontes envolvidas são similares. Já o modelo FMP não requer os perfis de fontes, mas tem a desvantagem de precisar de elevada quantidade amostral da concentração do contaminante no receptor. Os resultados mostraram, baseados nas medidas de performance que os dois modelos foram aptos para reproduzir os dados do receptor com ajustes aceitáveis. Todavia, resultados diferentes se ajustaram a medidas de performance. O modelo BQM, utilizou 9 tipos de fontes e o modelo FMP encontrou apenas 6 tipos de fontes. Constatou-se com isso que o modelo FMP tem dificuldades em modelar fontes que aparecem ocasionalmente. As fontes sulfato de amônio, solos, veículos a diesel e nitrato de amônio tiverem boas correlações nos resultados dos dois modelos de contribuições de fontes. Os perfis de fontes utilizados no modelo BQM e resultados do modelo FMP que mais se assimilaram foram das fontes nitrato de amônio, solos, sulfato de amônio e combustão de madeira e ou/ veículos desregulados. Verificou-se no modelo FMP que as espécies não características de determinadas fontes aparecem nos resultados dos perfis das fontes, o que torna-se ainda mais complexo a identificação das fontes, requerendo elevado conhecimento sobre a composição de inúmeras fontes. / The identification of sources of particulate matter has been a topic of growing interest throughout the world to assist the air quality management. This class of studies is conventionally based on the use of receptor models, which identify and quantify the sources responsible from the concentration of the contaminant in the receptor. There are a variety of receptor models, this study compares the results of chemical mass balance (CMB) and positive matrix factorization (PMF) models for a database of PM2.5, for the region of Brighton, Colorado, with a view to investigate the difficulties in the use of each model, as well as its advantages and disadvantages. It is known that the CMB model has the disadvantage of requiring source profiles, determined experimentally, to be applied and also has limitations when the sources involved are similar. On the other hand, the PMF model does not require source profiles, it has the disadvantage to require a large amount sample, in receptor. The results showed, based on performance measures that both models were able to reproduce the data of the receptor with reasonable fit. However, different results were adjusted for performance measurements. The CMB model, used 9 types of sources and PMF model found only 6 types of sources, it was noted by that what the PMF model has difficulty in modeling sources that appear occasionally. The sources ammonium sulfate, soil, diesel vehicles and ammonium nitrate have good correlation in the results of the two model of sources apportionment. The source profiles used in the CMB model and results of the PMF model that present more similarities were of the sources ammonium nitrate, soil, ammonium sulfate and combustion of wood and/or smoker vehicles. It was verified what the PMF model does not separate well species in the source profiles, therefore becomes even more complex to identify the sources in the FMP model, requiring considerable knowledge about the composition of many sources. For the database used with similar sources, the lack of confidence in the results based only on receptors models for a final decision on the source apportionment.
|
20 |
Investigation Of Short And Long Term Trends In The Eastern Mediterranean Aerosol CompositionOzturk, Fatma 01 January 2009 (has links) (PDF)
Approximately 2000 daily aerosol samples were collected at Antalya (30° / 34& / #900 / 30.54 E, 36° / 47& / #8217 / 30.54N) on the Mediterranean coast of Turkey between 1993 and 2001. High volume PM10 sampler was used for the collection of samples on Whatman& / #8211 / 41 filters. Collected samples were analyzed by a combination of analytical techniques. Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Mass Spectrometry (ICPMS) was used to measure trace element content of the collected samples from Li to U. Major ions, namely, SO42- and NO3-, were determined by employing Ion Chromatography (IC). Samples were analyzed in terms of their NH4+ contents by means of Colorimetry. Evaluation of short term trends of measured parameters have been shown that elements with marine and crustal origin are more episodic as compared to anthropogenic ones. Most of the parameters showed well defined seasonal cycles, for example, concentrations of crustal elements increased in summer season while winter concentrations of marine elements were considerably higher than associated values for summer. Seasonal Kendall statistic depicted that there was a decreasing trend for crustal elements such as Be, Co, Al, Na, Mg, K, Dy, Ho, Tm, Cs and Eu. Lead, As, Se and Ge were the anhtropogenic elements that decreasing trend was detected in the course of study period. Cluster and Residence time analysis were performed to find the origin of air masses arrving to Eastern Mediterranena Basin. It has been found that air masses reaching to our station resided more on Balkans and Eastern Europe. Positive Matrix Factorization (PMF) resolved eight factors influencing the chemical composition of Eastern Mediterranean aerosols as local dust, Saharan dust, oil combustion, coal combustion, crustal-anthropogenic mixed, sea salt, motor vehicle emission, and local Sb factor.
|
Page generated in 0.0508 seconds