• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 62
  • 45
  • 18
  • 12
  • 9
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 408
  • 408
  • 408
  • 111
  • 91
  • 85
  • 63
  • 62
  • 59
  • 54
  • 52
  • 51
  • 48
  • 46
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Using Advanced Imaging to Study Fish

Browning, Zoe Swezy 16 December 2013 (has links)
Although mammals are the most commonly utilized laboratory animal, laboratory animal medicine continually seeks to replace them with animals of lower phylogenic classification. Fish are becoming increasingly important as investigators seek alternative animal models for research. Fish can provide an economical and feasible alternative to typical mammalian models; moreover, many fish, which have comparatively short life spans, can easily reproduce in the laboratory. One key area of animal health research in which fish have been underutilized is the field of advanced imaging. Although many images of fish have been captured through the use of computed tomography (CT), radiography, and ultrasonography, these images have been primarily utilized for anatomical study. In addition, fish have never before been studied with positron emission tomography/ computed tomography (PET/CT). My objectives were to determine if these imaging techniques can be used to obtain physiological information from fish, therefore making it more likely that fish can be utilized as replacement animals using these new imaging techniques (CT, PET/CT). I performed two different types of studies to assess the potential application of advanced imaging techniques to fish. In the first experiment, microCT was used to characterize otolith deformity in vitamin C deficient captive-raised red drum and relate the deformity to behavioral and physiological changes. I found that the normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. In the second experiment, fluorodeoxyglucose-positron emission tomography/ computed tomography (FDG-PET/CT) was used to quantify glucose uptake in select organs prior to carcinogenesis studies in fish. The quantified glucose uptake was compared to published data on humans, mice, and dogs. Rapid, quantifiable glucose uptake was demonstrated, particularly in brain, kidneys, and liver in all imaged fish species. Glucose uptake in the major organ systems of fish was closer to that in humans than uptake in mice or dogs, indicating that fish may serve as an effective alternative animal model for tumor studies using this technology. Other applications for this technique in fish may include metabolism studies and screening for environmental carcinogenesis. I found that both microCT and PET/CT imaging provided useful and meaningful results. In addition, the use of non-invasive scanning allows for re-use of fish, thus reducing the number of animal models used in experiments. These experiments suggest that fish will be good replacement models for mammals using these advanced imaging techniques.
102

Development of a Targeted Adenoviral Vector Expressing HSV-TK for use in Breast Cancer Gene Therapy and Analysis through Positron Emission Tomography

DeSilva, Alan D Unknown Date
No description available.
103

Target Volume Delineation in Dynamic Positron Emission Tomography Based on Time Activity Curve Differences

Teymurazyan, Artur Unknown Date
No description available.
104

Positron Emission Tomography for the dose monitoring of intra-fractionally moving Targets in ion beam therapy

Stützer, Kristin 26 June 2014 (has links) (PDF)
Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumour conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumour volume to reach higher tumour control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumour entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumour sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany. High standards for quality assurance are required in IBT to ensure a safe and precise dose application. Both underdosage in the tumour and overdosage in the normal tissue might endanger the treatment success. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. It makes use of the tissue autoactivation by nuclear fragmentation reactions occurring along the beam path. Among others, +-emitting nuclides are generated and decay according to their half-life under the emission of a positron. The subsequent positron-electron annihilation creates two 511 keV photons which are emitted in opposite direction and can be detected as coincidence event by a dedicated PET scanner. The induced three-dimensional (3D) +- activity distribution in the patient can be reconstructed from the measured coincidences. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two +-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. This workflow has been proven to be valuable for the dose monitoring in IBT when it was applied for about 440 patients, mainly suffering from deep-seated head and neck tumours that have been treated with 12C ions at GSI. In the presence of intra-fractional target motion, the conventional 3D PET data processing will result in an inaccurate representation of the +-activity distribution in the patient. Fourdimensional, time-resolved (4D) reconstruction algorithms adapted to the special geometry of in-beam PET scanners allow to compensate for the motion related blurring artefacts. Within this thesis, a 4D maximum likelihood expectation maximization (MLEM) reconstruction algorithm has been implemented for the double-head scanner Bastei installed at GSI. The proper functionality of the algorithm and its superior performance in terms of suppressing motion related blurring artefacts compared to an already applied co-registration approach has been demonstrated by a comparative simulation study and by dedicated measurements with moving radioactive sources and irradiated targets. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the successful reduction of motion artefacts from a measurement with rotating (two-dimensional moving) radioactive sources. For 1D cos2 and cos4 motion, it has been clearly illustrated by systematic point source measurements that the motion influence can be better compensated with the same number of motion phases if amplitudesorted instead of time-sorted phases are utilized. In any case, with an appropriate parameter selection to obtain a mean residual motion per phase of about half of the size of a PET crystal size, acceptable results have been achieved. Additionally, it has been validated that the 4D MLEM algorithm allows to reliably access the relevant parameters (particle range and lateral field position and gradients) for a dose verification in intra-fractionally moving targets even from the intrinsically low counting statistics of IBT-PET data. To evaluate the measured +-activity distribution, it should be compared to a simulated one that is expected from the moving target irradiation. Thus, a 4D version of the simulation software is required. It has to emulate the generation of +-emitters under consideration of the intra-fractional motion, their decay at motion state dependent coordinates and to create listmode data streams from the simulated coincidences. Such a revised and extended version that has been compiled for the special geometry of the Bastei PET scanner is presented within this thesis. The therapy control system provides information about the exact progress of the motion compensated dose delivery. This information and the intra-fractional target motion needs to be taken into account for simulating realistic +-activity distributions. A dedicated preclinical phantom simulation study has been performed to demonstrate the correct functionality of the 4D simulation program and the necessity of the additional, motionrelated input parameters. Different to the data evaluation for static targets, additional effort is required to avoid a potential misleading interpretation of the 4D measured and simulated +-activity distributions in the presence of deficient motion mitigation or data processing. It is presented that in the presence of treatment errors the results from the simulation might be in accordance to the measurement although the planned and delivered dose distribution are different. In contrast to that, deviations may occur between both distributions which are not related to anatomical changes but to deficient 4D data processing. Recommendations are given in this thesis to optimize the 4D IBT-PET workflow and to prevent the observer from a mis-interpretation of the dose monitoring data. In summary, the thesis contributes on a large scale to a potential future application of the IBT-PET monitoring for intra-fractionally moving target volumes by providing the required reconstruction and simulation algorithms. Systematic examinations with more realistic, multi-directional and irregular motion patterns are required for further improvements. For a final rating of the expectable benefit from a 4D IBT-PET dose monitoring, future investigations should include real treatment plans, breathing curves and 4D patient CT images.
105

Nonlinear Mixed Effects Methods for Improved Estimation of Receptor Occupancy in PET Studies

Kågedal, Matts January 2014 (has links)
Receptor occupancy assessed by Positron Emission Tomography (PET) can provide important translational information to help bridge information from one drug to another or from animal to man. The aim of this thesis was to develop nonlinear mixed effects methods for estimation of the relationship between drug exposure and receptor occupancy for the two mGluR5 antagonists AZD9272 and AZD2066 and for the 5HT1B receptor antagonist AZD3783. Also the optimal design for improved estimation of the relationship between drug exposure and receptor occupancy as well as for improved dose finding in neuropathic pain treatment, was investigated. Different modeling approaches were applied. For AZD9272, the radioligand kinetics and receptor occupancy was simultaneously estimated using arterial concentrations as input function and including two brain regions of interest. For AZD2066, a model was developed where brain/plasma partition coefficients from ten different brain regions were included simultaneously as observations. For AZD3783, the simplified reference tissue model was extended to allow different non-specific binding in the reference region and brain regions of interest and the possibility of using white matter as reference was also evaluated. The optimal dose-selection for improved precision of receptor occupancy as well as for improved precision of the minimum effective dose of a neuropathic pain treatment was assessed, using the D-optimal as well as the Ds-optimal criteria. Simultaneous modelling of radioligand and occupancy provided a means to avoid simplifications or approximations and provided the possibility to tests or to relax assumptions. Inclusion of several brain regions of different receptor density simultaneously in the analysis, markedly improved the precision of the affinity parameter. Higher precision was achieved in relevant parameters with designs based on the Ds compared to the D-optimal criterion. The optimal design for improved precision of the relationship between dose and receptor occupancy depended on the number of brain regions and the receptor density of these regions. In conclusion, this thesis presents novel non-linear mixed effects models estimating the relationship between drug exposure and receptor occupancy, providing useful translational information, allowing for a better informed drug-development.
106

In vitro Functional Properties and In vivo Local Effects of Transplanted Human Progenitor Cells in Ischemic Tissues

Zhang, Yan 13 September 2011 (has links)
Growing evidence from animal and clinical studies suggests that cardiac cell therapy can restore perfusion and improve function in the ischemic/infarcted myocardium. However, cell therapy is hindered by insufficient cell numbers, inefficient cell homing and engraftment, and inadequate cellular interactions. Furthermore, the biological mechanisms and local effects of transplanted cells have not been well-elucidated. The research presented herein attempts to address some of these issues. In manuscript #1, a new subpopulation of circulating progenitor cells (CPCs), termed derived CD133+ cells, was generated from the CD133- fraction of human peripheral blood. The derived CD133+ progenitors appeared to have superior vasculogenic potential in vitro, which may prove to be beneficial in inducing vasculogenesis in ischemic tissues. Positron emission tomography (PET) with direct cell labeling and reporter gene techniques were employed to assess the fate of transplanted human CPCs in vivo at different subjects of investigation, and different stages of cell transplantation. In manuscript #2, PET imaging with 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) direct cell labeling was used to demonstrate that collagen-based matrices improve the early homing and retention of delivered CPCs in a rat ischemic hindlimb model. This mechanism conferred by the matrix may have implications on cell therapy at the early stages after transplantation. In manuscript #3, a more efficient, stable and accurate labeling method, hexadecyl-4-[18F]fluorobenzoate (18F-HFB) direct cell labeling, was developed to quantify cell distribution of transplanted CPCs in a rat myocardial infarction model. PET imaging of 18F-HFB-CPCs revealed significant cell washout from the myocardium immediately after intramyocardial injection, with only a small proportion of transplanted CPCs remaining in the target area in the first 4 hours after delivery. In manuscript #4, human CPCs transduced with lentiviral vectors showed stable expression of PET reporter genes. This reporter gene based-cell labeling technique can be developed for noninvasive tracking cells within a bioengineered matrix by PET, while preserving cell phenotype, viability and function. These studies contribute important insights into the biology and physiology of transplanted stem cells and the ability of delivery matrices to improve transplanted cell engraftment, survival, and function. I believe with further refinement, cell expansion, tissue engineering and PET imaging could facilitate the clinical applications of cell therapies in years to come.
107

Characterizing Rho Kinase Activity Using a Novel PET Tracer in Hypertrophied Cardiomyocytes

Moreau, Steven 06 June 2012 (has links)
Cardiac hypertrophy is a compensatory response to increased work load or stress on the heart, but over time can lead to heart failure and death. The molecular mechanisms underlying this disease are still not completely understood, however the Rho/Rho kinase pathway has been shown to play a role. N-[11C]-methyl-hydroxyfasudil, a PET radiotracer, binds to active Rho kinase and could be a possible tracer for hypertrophy. Hypertrophy was induced in vitro using the β-adrenergic receptor agonist isoproterenol to evaluate optimal Rho kinase activity. Rho kinase activity data was correlated to N-[11C]-methyl-hydroxyfasudil binding. Cardiac hypertrophy was verified with an increase in nuclear size (1.74 fold) and cell size (~2 fold), activation of hypertrophic signalling pathways, and increased Rho kinase activity (1.64 fold). This correlated to a 10.3% increase in N-[11C]-methyl-hydroxyfasudil binding. This data suggests that N-[11C]-methyl-hydroxyfasudil may be useful as a radiotracer for detecting cardiac hypertrophy and merits further in vivo investigation.
108

PET studies of the dopamine system in relation to cognitive functions /

Erixon-Lindroth, Nina, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
109

Synthesis and evaluation of new PET radioligands for imaging central norepinephrine transporters /

Schou, Magnus, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 7 uppsatser.
110

Pet imaging of two monoaminergic neurotransmitter systems in brain : studies of the norepinephrine transporter and dopamine D₂ receptor /

Seneca, Nicholas, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 5 uppsatser.

Page generated in 0.1001 seconds