Spelling suggestions: "subject:"posteriori error estimator"" "subject:"posteriori error esitimator""
1 |
Raffinement de maillage multi-grille local en vue de la simulation 3D du combustible nucléaire des Réacteurs à Eau sous Pression / Local multigrid mesh refinement in view of nuclear fuel 3D modelling in Pressurised Water ReactorsBarbié, Laureline 03 October 2013 (has links)
Le but de cette étude est d'améliorer les performances, en termes d'espace mémoire et de temps de calcul, des simulations actuelles de l'Interaction mécanique Pastille-Gaine (IPG), phénomène complexe pouvant avoir lieu lors de fortes montées en puissance dans les réacteurs à eau sous pression. Parmi les méthodes de raffinement de maillage, méthodes permettant de simuler efficacement des singularités locales, une approche multi-grille locale a été choisie car elle présente l'intérêt de pouvoir utiliser le solveur en boîte noire tout en ayant un faible nombre de degrés de liberté à traiter par niveau. La méthode Local Defect Correction (LDC), adaptée à une discrétisation de type éléments finis, a tout d'abord été analysée et vérifiée en élasticité linéaire, sur des configurations issues de l'IPG, car son utilisation en mécanique des solides est peu répandue. Différentes stratégies concernant la mise en oeuvre pratique de l'algorithme multi-niveaux ont également été comparées. La combinaison de la méthode LDC et de l'estimateur d'erreur a posteriori de Zienkiewicz-Zhu, permettant d'automatiser la détection des zones à raffiner, a ensuite été testée. Les performances obtenues sur des cas bidimensionnels et tridimensionnels sont très satisfaisantes, l'algorithme proposé se montrant plus performant que des méthodes de raffinement h-adaptatives. Enfin, l'algorithme a été étendu à des problèmes mécaniques non linéaires. Les questions d'un raffinement espace/temps mais aussi de la transmission des conditions initiales lors du remaillage ont entre autres été abordées. Les premiers résultats obtenus sont encourageants et démontrent l'intérêt de la méthode LDC pour des calculs d'IPG. / The aim of this study is to improve the performances, in terms of memory space and computational time, of the current modelling of the Pellet-Cladding mechanical Interaction (PCI),complex phenomenon which may occurs during high power rises in pressurised water reactors. Among the mesh refinement methods - methods dedicated to efficiently treat local singularities - a local multi-grid approach was selected because it enables the use of a black-box solver while dealing few degrees of freedom at each level. The Local Defect Correction (LDC) method, well suited to a finite element discretisation, was first analysed and checked in linear elasticity, on configurations resulting from the PCI, since its use in solid mechanics is little widespread. Various strategies concerning the implementation of the multilevel algorithm were also compared. Coupling the LDC method with the Zienkiewicz-Zhu a posteriori error estimator in orderto automatically detect the zones to be refined, was then tested. Performances obtained on two-dimensional and three-dimensional cases are very satisfactory, since the algorithm proposed is more efficient than h-adaptive refinement methods. Lastly, the LDC algorithm was extended to nonlinear mechanics. Space/time refinement as well as transmission of the initial conditions during the remeshing step were looked at. The first results obtained are encouraging and show the interest of using the LDC method for PCI modelling.
|
2 |
A Posteriori Error Analysis of Discontinuous Galerkin Methods for Elliptic Variational InequalitiesPorwal, Kamana January 2014 (has links) (PDF)
The main emphasis of this thesis is to study a posteriori error analysis of discontinuous Galerkin (DG) methods for the elliptic variational inequalities. The DG methods have become very pop-ular in the last two decades due to its nature of handling complex geometries, allowing irregular meshes with hanging nodes and different degrees of polynomial approximation on different ele-ments. Moreover they are high order accurate and stable methods. Adaptive algorithms refine the mesh locally in the region where the solution exhibits irregular behaviour and a posteriori error estimates are the main ingredients to steer the adaptive mesh refinement.
The solution of linear elliptic problem exhibits singularities due to change in boundary con-ditions, irregularity of coefficients and reentrant corners in the domain. Apart from this, the solu-tion of variational inequality exhibits additional irregular behaviour due to occurrence of the free boundary (the part of the domain which is a priori unknown and must be found as a component of the solution). In the lack of full elliptic regularity of the solution, uniform refinement is inefficient and it does not yield optimal convergence rate. But adaptive refinement, which is based on the residuals ( or a posteriori error estimator) of the problem, enhance the efficiency by refining the mesh locally and provides the optimal convergence. In this thesis, we derive a posteriori error estimates of the DG methods for the elliptic variational inequalities of the first kind and the second kind.
This thesis contains seven chapters including an introductory chapter and a concluding chap-ter. In the introductory chapter, we review some fundamental preliminary results which will be used in the subsequent analysis. In Chapter 2, a posteriori error estimates for a class of DG meth-ods have been derived for the second order elliptic obstacle problem, which is a prototype for elliptic variational inequalities of the first kind. The analysis of Chapter 2 is carried out for the general obstacle function therefore the error estimator obtained therein involves the min/max func-tion and hence the computation of the error estimator becomes a bit complicated. With a mild assumption on the trace of the obstacle, we have derived a significantly simple and easily com-putable error estimator in Chapter 3. Numerical experiments illustrates that this error estimator indeed behaves better than the error estimator derived in Chapter 2. In Chapter 4, we have carried out a posteriori analysis of DG methods for the Signorini problem which arises from the study of the frictionless contact problems. A nonlinear smoothing map from the DG finite element space to conforming finite element space has been constructed and used extensively, in the analysis of Chapter 2, Chapter 3 and Chapter 4. Also, a common property shared by all DG methods allows us to carry out the analysis in unified setting. In Chapter 5, we study the C0 interior penalty method for the plate frictional contact problem, which is a fourth order variational inequality of the second kind. In this chapter, we have also established the medius analysis along with a posteriori analy-sis. Numerical results have been presented at the end of every chapter to illustrate the theoretical results derived in respective chapters. We discuss the possible extension and future proposal of the work presented in the Chapter 6. In the last chapter, we have documented the FEM codes used in the numerical experiments.
|
3 |
Stratégie de raffinement automatique de maillage et méthodes multi-grilles locales pour le contact : application à l'interaction mécanique pastille-gaine / Automatic mesh refinement and local multigrid methods for contact problems : application to the pellet-cladding mechanical interactionLiu, Hao 28 September 2016 (has links)
Ce travail de thèse s’inscrit dans le cadre de l’étude de l’Interaction mécanique Pastille-Gaine (IPG) se produisant dans les crayons combustibles des réacteurs à eau pressurisée. Ce mémoire porte sur le développement de méthodes de raffinement de maillage permettant de simuler plus précisément le phénomène d’IPG tout en conservant des temps de calcul et un espace mémoire acceptables pour des études industrielles. Une stratégie de raffinement automatique basée sur la combinaison de la méthode multi-grilles Local Defect Correction (LDC) et l’estimateur d’erreur a posteriori de type Zienkiewicz et Zhu est proposée. Cette stratégie s’appuie sur l’erreur fournie par l’estimateur pour détecter les zones à raffiner constituant alors les sous-grilles locales de la méthode LDC. Plusieurs critères d’arrêt sont étudiés afin de permettre de stopper le raffinement quand la solution est suffisamment précise ou lorsque le raffinement n’apporte plus d’amélioration à la solution globale.Les résultats numériques obtenus sur des cas tests 2D élastiques avec discontinuité de chargement permettent d’apprécier l’efficacité de la stratégie proposée.Le raffinement automatique de maillage dans le cas de problèmes de contact unilatéral est ensuite abordé. La stratégie proposée dans ce travail s’étend aisément au raffinement multi-corps à condition d’appliquer l’estimateur d’erreur sur chacun des corps séparément. Un post-traitement est cependant souvent nécessaire pour garantir la conformité des zones de raffinement vis-à-vis des frontières de contact. Une variété de tests numériques de contact entre solides élastiques confirme l’efficacité et la généricité de la stratégie proposée. / This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local subgrids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore.Numerical results for elastic 2D test cases with pressure discontinuity shows the efficiency of the proposed strategy.The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multibody refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy.
|
4 |
Adaptive least-squares finite element method with optimal convergence ratesBringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert.
Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution.
This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
|
Page generated in 0.0678 seconds