1 |
Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinementPuttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
|
2 |
Adaptive least-squares finite element method with optimal convergence ratesBringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert.
Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution.
This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
|
Page generated in 0.077 seconds