• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Trace Elemental Analysis of Potassium Phosphates

Rohman, Joshua 28 June 2016 (has links)
No description available.
2

Extravasering vid behandlingar med aciklovir, kaliumfosfat och kaliumklorid inom intensivvården

Karim, Lara January 2020 (has links)
Extravasation is a condition that can occur during an intravenous administration. This means that the solution administered intravenously goes extravascular. Depending on physiochemical properties of the substance and solution, this can cause different severity of the damage. Extravasation of acyclovir, potassium phosphate and potassium chloride causes severe tissue damage that can, in worst case, lead to tissue necrosis. The purpose was therefore to investigate how acyclovir, potassium phosphate and potassium chloride causes tissue damage due to pH and osmolality and how the tissue damage can be avoided. To answer the purpose, a comprehensive literature search was conducted on three different databases; Pubmed, CINAHL and Cochrane. The literature search was in progress from February 4 to May 14 2020. The literature search generated a total of 42 articles and case reports, of which 13 of these were relevant for the purpose. These 13 articles consisted of two animal studies, three experimental observational studies, two guidelines from Västra Götalands Region, three case reports about acyclovir and three case reports of potassium phosphate and potassium chloride.   Two of the experimental observational studies showed that potassium chloride could be diluted with 100 mL of 0,9% sodium chloride or 5% dextrose in water to possibly avoid tissue damage due to extravasation. Such results were not found for either acyclovir or potassium phosphate. The conclusion that could be drawn was that acyclovir caused tissue damage because of its alkaline pH, potassium phosphate because of its hyperosmolality and potassium chloride because of its acidic pH and its hyperosmolality. One way to possibly avoid tissue damage caused by extravasation is to dilute the substances with higher dilution volumes. However, due to the lack of reliability of the included studies, it cannot be safely concluded that tissue damage can be avoided.
3

Design of new activated carbon based adsorbents for improved desulfurization of heavy gas oil: Experiments and kinetic modeling

Nawaf, A.T., Jarullah, A.T., Hameed, S.A., Mujtaba, Iqbal M. 31 March 2022 (has links)
Yes / In this work, adsorption desulfurization is considered for making cleaner fuel. New efficient adsorbents have been designed by using two active metal oxides mainly potassium permanganate (KMnO4) and potassium phosphate (KPO4·3H2O) on Activated Carbon (AC). Ultrasonic assisted impregnation method (IWI) is used in designing the adsorbents offering high pore volume, pore size, surface chemistry, and high surface area. Use of ultrasonic method increases the dispersion of the active material (groups) on AC leading to increased number of collisions between O-atom on AC-support resulting in high sulfur removal from fuel. KMnO4 on AC shows higher adsorption capacity towards sulfur than KPO4·3H2O at the same operating conditions. New results with respect to sulfur removal has obtained compared with those obtained by previous studies. Finally, the adsorption kinetic parameters of such process are developed. Thomas and Yoon-Nelson models and the experimental data are used for this purpose using linear and non-linear regression analysis. Yoon-Nelson kinetic model fits well with the experiments data better than Thomas kinetic model in the entire adsorption column system.

Page generated in 0.0667 seconds