• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a pepper (Capsicum annuum L.) hybrid variety with resistance to potato virus Y (PVY) using molecular breeding.

Moodley, Vaneson. 03 June 2014 (has links)
Pepper (Capsicum annuum L.) is an important vegetable crop grown and consumed worldwide. Potato virus Y (PVY) is a globally economically important pathogen which significantly reduces the yield and quality of cultivated pepper. The virus is considered as a major limiting factor to the economic production of pepper in the province of KwaZulu-Natal (KZN) in the Republic of South Africa (RSA). Many applied practices to control the spread of PVY are ineffective to mitigate the losses incurred by many farming communities across the KZN province. Therefore, the objectives of this study was to determine the full genome sequence of a PVY isolate from KZN, to identify resistance alleles in commercially available pepper varieties in KZN and to develop a pepper hybrid variety with resistance to PVY using a molecular breeding strategy The first part of the study was conducted to determine the first full genome sequence of a PVY isolate (JVW-186) infecting pepper from KZN. The complete genome sequence of JVW-186 was assembled from overlapping RT-PCR clones using MEGA 5 software. Individual ORFs were identified using the nucleotide data base NCBI and aligned using CLUSTALW. RDP4 software was used to identify recombination junctions in the sequence alignment of JVW-186. CLC Main Workbench 6 software was used to determine the nucleotide sequence similarity of recombinant and non-recombinant fragments of JVW-186 in conjunction with ten PVY parental isolates. Based on sequence data, virus morphology and the coat protein size as determined by SDS-PAGE analysis, the identity of the isolate JVW-186 was confirmed as PVY. Phylogenetic trees were constructed from all recombinant and non-recombinant segments of the sequence by the maximum likelihood method using MEGA 5 software. The full length sequence of JVW-186 consisted of 9700bp. Two ORF’s were identified at position 186 and 2915 of the sequence alignment encoding the viral polyprotein and the frameshift translated protein P3N-PIPO, respectively. RDP4 software confirmed two recombination breakpoints at position 343 and 9308 of the sequence resulting in four segments of the genome. At each recombination event, a 1021-bp fragment at the 5’ end in the region of the P1/HC-Pro protein and a 392-bp fragment in the region of the coat protein shared a high sequence similarity of 91.8 % and 98.89 % to the potato borne PVYC parental isolate PRI-509 and the PVYO parental isolate SASA-110 respectively. The non-recombinant fragment 1 clustered within the C clade of PVY isolates; however the large 7942-bp fragment 3 did not cluster within any of the clades although it shared > 80% nucleotide sequence similarity to other PVY isolates used in this study. Our results suggest that isolate JVW-186 is a novel recombinant strain of PVY that could have evolved due to the dynamics of selection. The second part of the study aimed to evaluate different pepper lines for resistance to PVY. Two recessive alleles (pvr21 and pvr22) located on the pvr2-elF4E locus are known to confer resistance to the virus. To this end, six pepper lines were challenged with PVY infected Nicotiana tabacum cv. Xanthi leaf material using mechanical inoculation under greenhouse conditions. Each line was assessed for resistance to PVY by visual screening for disease severity and quantitative enzyme linked immunosorbent assay (ELISA) for virus load. Pepper lines were further characterized using tetra-primer ARMS-PCR (amplification refractory mutation system polymerase chain reaction) to identify and differentiate the presence of homozygous/heterozygous resistance alleles that confer PVY resistance. Evaluations revealed two resistant pepper lines (Double Up and Cecelia) and varying levels of susceptibility in the other four pepper lines challenged with PVY. The most susceptible pepper line was Benno, although high levels of susceptibility were observed in three other lines (IP, Mantenga and Excellence). The pvr2+ allele was positively identified in all the susceptible pepper lines using the T200A tetra-primer which confirms that the presence of this allele is dominant for PVY susceptibility. Double Up and Cecelia were genotyped homozygous pvr21/pvr21 and pvr22/pvr22 respectively, and remained asymptomatic throughout the trial which indicates that these alleles confer resistance to the isolate of PVY used in this study. The information generated in this study can be incorporated into breeding programs intended to control PVY on pepper in KZN. The final part of the study focused on the development of resistant varieties as the best alternative to manage PVY diseases on pepper. Homozygous F2 pepper lines were developed from local germplasm carrying PVY resistance genes (pvr21 and pvr22) using marker assisted selection (MAS). The F1 progeny was obtained by crossing a homozygous pvr21 (resistant) ‘Double Up’ cultivar with a heterozygous susceptible (pvr2+/pvr22) ‘Benno’ cultivar. F1 and F2 generations were assessed for the presence of PVY resistance/susceptibility alleles (pvr2+/pvr21/pvr22) at the pvr2-elF4e locus using the tetra primer amplification refractory mutation system – polymerase chain reaction (ARMS-PCR) procedure. Negative selection was carried out using the tetra-primer T200A marker to detect the pvr2+ (susceptible) allele. All F1 progeny displaying the pvr2+ allele were eliminated from further study. All 302 plants belonging to 29 F2 families expressing homozygous recessive traits were tested via mechanical inoculation for their response to PVY infection and resistance to PVY was confirmed in all selected families based on symptomatology in greenhouse house screens using double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). These results show that ARMS-PCR can be used to successfully screen pepper genotypes for alleles that confer PVY resistance thereby contributing to the improvement of pepper production using molecular breeding approaches. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
2

Characterization of potato virus Y (PVY) isolates infecting solanaceous vegetables in KwaZulu-Natal (KZN), Republic of South Africa (RSA)

Ibaba, Jacques Davy. January 2009 (has links)
Potato virus Y (PVY) is an economically important virus worldwide. In South Africa, PVY has been shown to be a major limiting factor in the production of important solanaceous crops, including potato (Solanum tuberosum L.), pepper (Capsicum annuum L.), tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana spp). The variability that PVY displays, wherever the virus occurs, merits the study of the isolates occurring in KwaZulu-Natal (KZN) in the Republic of South Africa (RSA). This characterization will provide a clear understanding of strains/isolates from local vegetables and how they relate to the other PVY strains already identified, as well as information that can be used to manage the diseases they cause. Hence, the aim of this project was to study the biological and genetic properties of PVY isolates infecting potato, tomato and pepper in KZN. Enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies and reverse transcription polymerase chain reaction (RT-PCR) using primers specific to all PVY strains were used to detect the virus in plant material showing PVY-like symptoms collected from various locations in KZN. A total of 39 isolates (18 isolates infecting tomato, 12 infecting potato and 9 infecting pepper) were further differentiated into strains by means of ELISA using strain specific antibodies and RT-PCR using primers specific to the different strains of PVY identified around the world. All PVY isolates infecting tomato and pepper tested positive for the ordinary PVYO strain with both ELISA and RT-PCR. PVY isolates infecting potato were more diverse and comprised the PVYN, PVYNTN and PVYNWilga strains, with mixed infections noted in some cases. The biological properties were studied by mechanically inoculating Chenopodium quinoa, Nicotiana tabacum cv Xanthi, N. tabacum cv Samsun, N. glutinosa, and N. rustica with leaf extracts from plants infected with the different PVY strains detected in this study. All inoculated C. quinoa plants did not show symptoms. All tobacco plants showing symptoms were tested for the presence of PVY by means of ELISA using monoclonal antibodies targeting all strains and electron microscopy using the leaf dip technique. Not all the inoculated tobacco tested positive with ELISA. The symptoms observed were therefore divided into PVY-related and PVY non- related. PVY-related symptoms included vein clearing, mosaic chlorosis, stunting, and vein necrosis. PVY non-related symptoms included wrinkles and leaf distortions. Potyvirus-like particles of about 700 nm were observed under the transmission electron microscope (TEM) from plants showing PVY-related symptoms while rod shaped viral particles of sizes varying between 70 and 400 nm were observed from plants showing non-PVY related symptoms. A portion of the virus genome (1067 bp) covering part of the coat protein gene and the 3’ non-translated region (NTR) of three PVYO isolates infecting tomato, one PVYO isolate infecting pepper and one PVYNWilga isolate infecting potato were amplified, cloned and sequenced. The 5’ NTR, P1, HC-Pro and part of P3 regions (2559 bp) of a PVYN isolate infecting potato were also amplified, cloned and sequenced. Sequence data was compared with selected PVY sequences from different geographical locations around the world. These were available on the NCBI website and subsequently used for phylogenic analyses. The sequenced genomic regions of the PVYN isolate were found to be 99% similar to the New Zealand PVYN isolate (GenBank accession number: AM268435), the Swiss PVYN isolate CH605 (X97895) and the American PVYN isolate Mont (AY884983). Moreover, the deduced amino acid sequence comparison of the genomic regions of the PVYN isolate revealed the presence of five distinct amino acids residues. The three amino acid residues (D205, K400, and E419), which determine the vein necrosis phenotype in tobacco, were also identified. The coat protein and 3’ NTR sequences of all KZN PVYO isolates infecting pepper and tomato were closely similar to each other than to KZN PVYNWilga isolate infecting potato. The phylogenic analysis clustered the KZN PVYN isolate with the European sublineage N, PVYNWilga isolate infecting potato with the American PVYO isolate Oz (EF026074) in the O lineage and all PVYO isolates infecting tomato and pepper in a new sublineage within the O lineage. Taken together, these results point to the presence of PVY in solanaceous vegetables cultivated in KZN and they lay the foundation for the formulation of effective control measure against PVY diseases in KZN. / Thesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.

Page generated in 0.0474 seconds