• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Uncinula necator, the grapevine powdery mildew fungus /

Evans, Katherine J. January 1996 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Crop Protection, 1996. / Includes bibliographical references (leaves 148-166).
2

Identification of host genes involved in the biotrophic interaction between grapevine and powdery mildew

Hayes, Matthew Allan. January 2006 (has links)
Thesis (Ph.D.) --University of Adelaide, School of Agriculture, Food and Wine, Discipline of Wine and Horticulture, 2006. / "January, 2006" Bibliography: leaves 128-144 of source document. Also available in print form.
3

Species and population diversity of powdery mildews on grain legumes in the US Pacific Northwest

Kithul-Pelage, Renuka Nilmini Attanayake, January 2008 (has links) (PDF)
Thesis (M.S. in plant pathology)--Washington State University, August 2008. / Title from PDF title page (viewed on Mar. 11, 2009). "Department of Plant Pathology." Includes bibliographical references.
4

Techniques for the quantitative inoculation of powdery mildew (Erysiphe pisi) on pea (Pisum sativum)

Reeser, Paul Warren. January 1982 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 81-87).
5

Biology and control of rose powdery mildew

Coyier, Duane L. January 1961 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1961. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Bibliography: leaves 104-109.
6

Understanding sporulation and dissemination of Podosphaera macularis, hop powdery mildew /

Peetz, Amy B. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 70-78). Also available on the World Wide Web.
7

Powdery mildew on barley : pathogen variability in South Australia : resistance genes in cv. Galleon /

Hossain, Mohammad Abul. January 1986 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, 1986. / Includes bibliographical references (leaves 173-200).
8

Powdery mildew (Podosphaera macularis Braun & Takamatsu) resistance in wild hop genetic resources /

Smith, Jodi M. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2005. / Printout. Includes bibliographical references. Also available on the World Wide Web.
9

Identification of host genes involved in the biotrophic interaction between grapevine and powdery mildew

Hayes, Matthew Allan January 2006 (has links)
Grapevine powdery mildew is caused by Erysiphe necator, an Ascomycete fungus and an obligate biotroph restricted to growth on its grapevine host. Biotrophic pathogens form a stable association with host cells without directly causing cell death, and take up nutrients from, in the case of powdery mildew ( PM ), host epidermal cells ( Rumbolz et al., 2000 ). As the fungus grows, its increasing biomass becomes a strong nutrient sink capable of altering assimilate flow and storage in the host. To identify host genes that may mediate nutrient delivery to powdery mildew infected tissues and therefore may contribute to disease susceptibility, a candidate gene approach using degenerate and RT - PCR, and a nontargeted approach using microarray analysis was instigated. Once identified, " susceptibility genes " could be targeted for manipulation to provide alternative resistance strategies based on reduced susceptibility in the future. In addition to genes encoding pathogenesis and stress related proteins, microarray analysis revealed that transcript levels of a putative metal transporter and a cell wall structural protein were elevated in infected berry skin, while aquaporin water channels and genes associated with photosynthesis were generally repressed. Degenerate PCR was used to isolated new cell wall invertase, monosaccharide and amino acid transporter genes and initial RT - PCR revealed that expression of genes involved in sugar mobilisation were the most significantly modulated by powdery mildew infection. Previously unreported hexose transporters ( HTs ), ( VvHT3, VvHT4 and VvHT5 ) and a cwINV ( VvcwINV ) had been isolated from cDNA prepared from powdery mildew infected grapevine leaves. Full length clones of grapevine HTs and cwINV were obtained by RACE PCR. Heterologous expression of the three new HTs in yeast confirmed that VvHT4 and VvHT5 mediated glucose uptake, while VvHT3 did not function in the yeast system. However, transient expression of a translational fusion of the VvHT3 protein with green florescence protein in onion epidermal cells indicated that it is targeted to the plasma membrane of plant cells. Quantitative RT - PCR analysis of these new genes, together with previously reported grapevine HTs and cytoplasmic and vacuolar invertases, indicated that expression of VvcwINV and VvHT5, were significantly up - regulated by PM infection, while a vacuolar invertase was strongly down - regulated by PM infection. Invertase activity assays were in agreement with these findings, showing elevated sucrolytic activity in insoluble fractions and reduced sucrolytic activity in soluble fractions. These results suggest that apoplasmic phloem unloading of sucrose in the infected leaf is elevated and that VvHT5 is induced to recover the additional hexoses from the apoplasm. Basic localisation studies indicated that VvHT5 and VvcwINV are not induced specifically in powdery mildew infected leaf regions, but are induced in a more diffuse distribution within infected leaves. To determine if induction of VvHT5 and VvcwINV is specific to PM infection or if other stimuli may also mediate these responses, leaves were inoculated with downy mildew or stressed by wounding. Transcript levels of VvHT5 and VvcwINV were elevated by wounding and downy mildew infection, suggesting that the induction of these genes may be part of a general stress response. To explore the signalling pathways that may underlie these responses, leaves were treated with the plant growth regulators ethylene, jasmonate and abscisic acid. Exogenous application of ethylene and methyl jasmonate only marginally affected the expression of the genes studied, however foliar application of abscisic acid ( ABA ) induced gene expression changes similar to those observed in response to powdery mildew infection and wounding. Promoter sequences of VvHT3, VvHT4, VvHT5 and VvcwINV were isolated and analysed for the presence of regulatory elements. Compared with the promoters of VvHTs that were not induced by pathogen infection or wounding, the VvHT5 and VvcwINV promoters contained numerous motifs associated with induction by ABA including ABRE, Myc and Myb binding elements. The path of sugar loading into the mesocarp of grape berries during ripening is still poorly understood and few molecular components associated with this process have been described. Quantitative RT - PCR was used to monitor the expression of five HTs and VvcwINV during Cabernet sauvignon and Shiraz berry development and ripening. Of the three new HTs reported here, the expression of VvHT3 is most consistent with a potential role in sugar loading, while VvHT5 is induced late in this process. VvcwINV transcript levels were high pre - ripening and also during the later stages of ripening, therefore based on this expression pattern, a role for this enzyme during ripening is not clearly evident. These results are discussed in terms of an apoplasmic step in phloem unloading in ripening grape berries. This study has provided new insights into the molecular and biochemical processes associated with the formation of carbohydrate sink metabolism in response to stress stimuli, and sugar delivery to grape berries during ripening. ABA - dependant pathways may mediate the stress - associated induction of VvcwINV and VvHT5, presumably to recruit additional carbohydrates to the affected organ to energise repair and defence responses. At this stage it is unknown if this response is beneficial to pathogen nutrition, however potentially, modification of genes associated with carbohydrate sink metabolism could provide an alternative way to engineer resistance to this pathogen. / Thesis (Ph.D.)--School of Agriculture, Food and Wine, 2006.
10

Characterization of Uncinula necator, the grapevine powdery mildew fungus

Evans, Katherine J. January 1996 (has links) (PDF)
Bibliography: leaves 148-166. This study identifies genetic variation in Australian Uncinula necator populations. Techniques were developed for molecular and phenotypic markers for U. necator. Mating types of Australian clonal lines were identified and viable cleistothecia and infective ascospores were produced in vitro. The study establishes the foundation for investigating the population biology of U. necator, by identifying two distinct genetic groups, A and B, and micro-geographical variation among 35 clonal lines from various Australian viticultural regions.

Page generated in 0.067 seconds