• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies of the resistance of tobacco to a second attack of Peronospora tabacina adam

Cox, Carroll E. January 1940 (has links)
This study is concerned with the resistance of tobacco seedlings to a second attack of downy mildew caused by Peronospora tabacina Adam. Observations were made on the development and duration of resistance following recovery of tobacco seedlings from downy mildew. The duration of the period of resistance is variable and the observations indicate that plants in the greenhouse recovering during the summer remain resistant longer than do plants recovering from an initial attack during the winter. Samples of leaf tissue from recovered (resistant), infected and previously uninfected (susceptible) plants grown in soil in the greenhouse were analyzed for ammonia-nitrogen, nitrate-nitrogen, reducing sugars and total sugars. Similar analyses were made of samples of leaf tissue from tobacco plants grown in crocks of quartz sand and irrigated with nutrient solutions and from plants grown in crocks of sand-peat mixture to which various mixed fertilizers were added. There was no correlation between the ammonia-nitrogen content of tobacco plants, as determined in these experiments, and the response of the tobacco plant and its susceptibility to attack by P. tabacina, but there was a strong indication that such a relationship exists. Recovered plants contained a higher ratio of total sugar to nitrate-nitrogen than did comparable plants which had never been infected. Furthermore the ratio of total sugar to nitrate-nitrogen was lower in plants infected for a second time than it was in plants from the same lot shortly after they had recovered from the initial attack. It seems probable however that the changes in the nitrate-nitrogen and sugar content in recovered tobacco leaves are an indication of recovery and are not responsible for the resistance possessed by such plants. A series of experiments were performed to test the immediate effect of several nutrient salts and of sugar upon the sporulation of the fungus on the leaves of diseased tobacco plants. There was a very definite response in sporulation to some of these treatments, especially to potassium nitrate, calcium nitrate, and sucrose, but it is not known whether the response of sporulation of the fungus to such treatment is related to the type of resistance possessed by recovered plants. Sodium chloride and calcium chloride were dissolved in water and applied to the soil in which young tobacco plants were growing in the greenhouse. Although increased chloride in one of the sand cultural experiments seemed to protect the plants somewhat against downy mildew, application of solutions of these salts to the soil at the rates used (100 lbs. And 138 lbs. Per acre respectively) produced no noticeable effect on the severity of the disease or subsequent recovery of the plants. The leaves of recovered (resistant) tobacco plants are usually reduced in number, the lower ones having been killed by the initial attack of the fungus. Removal of the leaves from healthy tobacco plants in imitation of this condition did not produce resistance to an attack by P. tabacina. The artificial production of necrotic areas on healthy tobacco leaves in simulation of those usually following sporulation of P. tabacina on diseased leaves had no effect either on the susceptibility of the plants to infection or upon sporulation of the fungus on leaves already infected at the time the necrotic areas were induced. Results of attempts to confer immunity from downy mildew upon an entire plant by infection of a single leaf of the plant were inconclusive, since under the conditions of the experiment it was impossible to be sure that the single leaf was infected. However, the indication is that infection of a single leaf will not render the entire plant immune from a second attack by the fungus. / Master of Science
22

Studies on the use of biocontrol agents and soluble silicon against powdery mildew of zucchini and zinnia /

Tesfagiorgis, Habtom Butsuamlak. January 2008 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2008. / Full text also available online. Scroll down for electronic link.
23

Studies on the use of biocontrol agents and soluble silicon against powdery mildew of zucchini and zinnia.

Tesfagiorgis, Habtom Butsuamlak. January 2008 (has links)
Powdery mildew (PM) is an important foliar disease of many crops, occurring under both greenhouse and field conditions. The application of biological control and soluble silicon (Si) against PM has received increasing acceptance as a result of increased environmental and public concern over the use of fungicides for disease management, and because many key fungicides are no longer effective because of resistance problems. However, success with these control options depends on the development of effective antagonists and understanding how best to use Si in agriculture. Potential antagonists of PM were isolated from naturally infected leaves of different plants. A total of 2000 isolates were tested in a preliminary screening on detached leaves of zucchini. The best 30 isolates showing consistent results were further tested under greenhouse conditions for their efficacy against PM of zucchini. In a greenhouse trial, 23 isolates provided disease control to levels of 30 to 77%. Application of 29 isolates resulted in significant reductions in values of area under disease progress curve (AUDPC). The best five isolates were identified as Clonostachys rosea (Link) Schroers, Samuels, Seifert & Gams (syn. Gliocladium roseum) (Isolate EH), Trichothecium roseum (Pers.) Link (syn. Cephalothecium roseum) (Isolate H20) and Serratia marcescens (Bizio) (Isolates B15, Y15 and Y41). Three adjuvants (Break-ThruR (BK), PartnerR (PR) and Tween-80R (T-80)) were compared for their ability to improve efficacy of spray application of silicon (Si) and biocontrol agents (BCAs) against PM. Both BK and PR improved the efficacy of Si significantly (P < 0.05). Microscopic studies showed that BK affected PM fungi directly and enhanced the deposition of BCAs on the pathogen. Break-ThruR was only toxic to the pathogen mycelia when used at > 0.25 m. .-1, but phytotoxic to zucchini plants when used at > 0.45m. .-1. However, it did not affect the c.f.u. of bacterial BCAs. Use of BK at 0.2-0.4 m. .-1 can be recommended to assist spray application of Si (at 750 mg .-1) or BCAs for improved control of PM. The effect of concentration, frequency of application and runoff of Si sprays applied to the foliage was evaluated for control of PM of zucchini. Silicon (250-1000 mg .-1) + BK (0.25 m. .-1), was sprayed onto zucchini plants at frequencies of 1-3 wk-1. Spraying Si reduced the severity of PM significantly (P < 0.05). Regardless of the concentration of Si, the best results were obtained when the frequency of the treatment was increased, and when spray drift or spray runoff were allowed to reach the rhizosphere of the plants. When Si was applied onto leaves, direct contact between the spray and the pathogen resulted in mycelial death. Part of the spray (i.e., drift and runoff) was absorbed by plant roots, and subsequently played an important role in the health of the plants. If affordable, soluble Si should be included in nutrient solutions of hydroponics or supplied with overhead irrigation schemes when PM susceptible crops are grown. Under greenhouse conditions, application of BCAs, with or without Si, reduced the severity and development of PM significantly (P < 0.001). Application of Si significantly reduced the severity and AUDPC values of PM (P < 0.05 for both parameters). Silicon alone reduced the final disease level and AUDPC values of PM by 23-32%, and improved the efficacy of most BCAs. In the course of the investigation, antagonistic fungi consistently provided superior performances to bacterial isolates, providing disease control levels of up to 90%. Higher overall disease levels reduced the efficacy of Si against PM, but did not affect the efficacy of BCAs. Under field conditions, Si alone reduced disease by 32-70%, Isolate B15 reduced disease by 30-53% and Isolate B15 + Si reduced disease by 33-65%. Other BCAs applied alone or together with Si reduced the disease level by 9-68%. Most BCAs reduced AUDPC values of PM significantly. For most antagonists, better efficacy was obtained when Si was drenched into the rhizosphere of the plant. However, efficacy of some of the BCAs and Si were affected by environmental conditions in the field. Repeated trials and better understanding of how to use Si and the BCAs, in terms of their concentration and application frequency, and their interactions with the plant and the environment, are needed before they can be used for the commercial control of PM. Elemental analysis was conducted to determine the impact of differing application levels of silicon (Si) in a form of potassium silicate (KSi) in solution in terms of Si accumulation and selected elements in different tissues of zucchini and zinnia and growth of these plants, and to study the effect of PM on the levels of selected elements in these two plant species. Plants were grown in re-circulating nutrient solutions supplied with Si at different concentrations and elemental composition in different parts were analysed using EDX and ICP-OES. Increased levels of Si in the solution increased the levels of Si in leaves and roots of both plants without affecting its distribution to other plant parts. In zucchini, the roots accumulated the highest levels of Si, substantially more than in the shoots. In contrast with zinnia, accumulation of Si was highest in the leaves. Accumulation of potassium (K) in shoots of both plants increased with increased levels of KSi in the nutrient solution. However, K levels in flower of zinnia, fruits of zucchini and roots of both plants remained unaffected. Increased level of Si reduced accumulation of calcium (Ca) in both plants. Adding Si into the nutrient solution at 50 mg .-1 resulted in increased growth of zucchini and increased uptake of P, Ca, and Mg by both plant species. However, application of higher levels of Si did not result in any further biomass increase in zucchini. Levels of Si in the nutrient solution had no effects on elemental composition and characteristics of the fruits of zucchini. In both plant species, the presence of PM on the leaves of plants resulted in these leaves accumulating higher levels of Si and Ca, but less P, than leaves of uninfected plants exposed to the same levels of soluble Si. The highest concentrations of Si were observed in leaf areas infected with PM, and around the bases of trichomes. For optimum disease control and maximum accumulation of different elements in these two plants, hydroponic applications of Si at 50-150 mg .-1 is recommended. Five selected biocontrol agents and potassium silicate, used as source of soluble Si, were tested under hydroponic conditions at various concentrations against PM of zinnia (Glovinomyces cichoracearum (DC) Gelyuta, V.P.). Application of BCAs resulted in reductions in final disease level and AUDPC values of PM by 38-68% and 30-65%, respectively. Both severity and AUDPC values of PM were reduced by 87-95% when plants were supplied with Si (50-200 mg .-1). It is proposed that the provision of a continuous supply of Si and the ability of this plant species to accumulate high levels of Si in its leaves were the major reasons for the good response of zinnia to Si treatments against PM. Silicon played a protective role before infection and suppressed development of PM after infection. The combination of the best selected BCAs and Si can be used as an effective control option against PM of zinnia when grown in hydroponic system. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
24

An investigation into the use of biological control agents as a sustainable alternative to synthetic fungicides in treating powdery mildew in tunnel cucumbers

Haupt, Michael Rory 31 January 2007 (has links)
The use of biological control agents (BCAs) in the past has shown limited success as its application has often been done incorrectly, and in addition, management practices are rarely altered to incorporate BCAs. Criteria for the correct application of BCAs have been devised as part of the research, and companies selling these products may use the said criteria. Such application will ensure the correct BCAs are used and, more specifically, used under the correct conditions. The powdery mildew (PM) fungus is often seen to develop resistance to synthetic fungicides and, therefore, alternative control measures are required. BCAs as an alternative pose less risk to the environment, workers and the consumer. A pre-trial has been conducted with a range of BCAs to see if they can control powdery mildew (PM) in a greenhouse environment on hydroponically grown cucumber (Cucumis sativus L.) plants using the variety Baccara that has only a moderate tolerance to PM. The BCAs have been compared to the control (synthetic fungicide: Bravo). Comparative work includes Coyier's model, which has been modified and adapted for these trials to determine the percentage of leaf area covered by the PM infection. Furthermore, the number of fruit harvested per treatment, kilogram yield, total mass of yield and average fruit mass is also used to determine the efficacy of the BCAs as these factors have economic significance to commercial growers. The pre-trial showed promise until the fertigation computer failed, resulting in a nutrient shortage and imbalance, confirming that BCAs alone cannot control PM. Synthetic fungicides were applied until control of PM and plant nutrition was regained. BCAs were re-introduced and used until the end of crop production. The confirmation from the pre-trial has led to the inclusion of silicon in conjunction with the BCAs in the two subsequent trials (Trials 1 & 2). Silicon was applied with the BCAs as a foliar spray on a weekly basis. In trials 1 and 2, the cucumber variety, Palladium, with a high genetic tolerance to PM is used, as this variety is suited to form part of the holistic approach used for trials 1 and 2. Trial 1 showed that treatment A, containing Streptomyces griseovirdis and Streptomyces aureofaciens, had the highest yield. Both of these are bacterial BCAs and demonstrated their adaptability to varied climatic conditions, notably when low humidity was experienced. In treatment B, Trichoderma harzianum strains, Rifai and Uppington, show the slowest rate of PM development. In trials 1 and 2, the best actual PM control was obtained by two fungal based BCAs (Trial 1, treatment C was Ampelomyces quisqualis) and (Trial 2, treatment B was Trichoderma harzianum strains, Rifai and Uppington), showing that fungal BCAs have a place for this application, but the growth-enhancing properties of bacterial based BCAs make economic sense and would make them attractive to growers. Treatment A (Streptomyces spp.) had the most number of fruit for the entire growing period and the best overall yield (kg yield) again. Two of the BCA / silicon treatments have marginally better PM control compared to that of the control (E) treatment, although not statistically significant. Treatment E (control) has the highest average fruit mass in this instance but does not have the highest yield (kg yield) when compared to treatments A and B, possibly due to the growth-enhancing properties of most of these BCAs. Therefore, most of these BCA treatments give fairly inconsistent results that vary possibly according to season, humidity and temperature, making it difficult to predict their efficacy. Using combinations or weekly alternations of these BCAs with extremes of climatic adaptation will probably be the most reliable method of obtaining consistent results. Bacterial BCAs are shown to have lower humidity requirements and produce the most consistent results in terms of fruit number, yield and fruit mass and a combination of bacterial and fungal based BCAs would possibly be the best as this would control PM and yet still have the growth enhancing properties from the bacterial based BCAs. From the research, it can be said that some BCAs in trials 1 and 2 produce results similar to that of the control in terms of percentage leaf area covered by PM and some are shown to have improved yields. Results produced from certain BCA treatments are thus equal to the control; yet provide an environmentally friendly alternative to synthetic fungicides. Silicon is listed as a beneficial element rather than an essential element; however, literature claims it to be highly effective in treating PM in cucurbits. Results from trials 1 and 2 show that control of PM is possible in most cases, when a holistic approach is used. This approach includes a cucumber variety with a high PM tolerance, optimum nutrition, cultural practices and silicon in combination with the BCAs. A complete change of management practices is necessary to implement such a BCA program. / Agriculture, Animal Health & Human Ecology / M. Tech. (Nature Conservation)
25

An investigation into the use of biological control agents as a sustainable alternative to synthetic fungicides in treating powdery mildew in tunnel cucumbers

Haupt, Michael Rory 31 January 2007 (has links)
The use of biological control agents (BCAs) in the past has shown limited success as its application has often been done incorrectly, and in addition, management practices are rarely altered to incorporate BCAs. Criteria for the correct application of BCAs have been devised as part of the research, and companies selling these products may use the said criteria. Such application will ensure the correct BCAs are used and, more specifically, used under the correct conditions. The powdery mildew (PM) fungus is often seen to develop resistance to synthetic fungicides and, therefore, alternative control measures are required. BCAs as an alternative pose less risk to the environment, workers and the consumer. A pre-trial has been conducted with a range of BCAs to see if they can control powdery mildew (PM) in a greenhouse environment on hydroponically grown cucumber (Cucumis sativus L.) plants using the variety Baccara that has only a moderate tolerance to PM. The BCAs have been compared to the control (synthetic fungicide: Bravo). Comparative work includes Coyier's model, which has been modified and adapted for these trials to determine the percentage of leaf area covered by the PM infection. Furthermore, the number of fruit harvested per treatment, kilogram yield, total mass of yield and average fruit mass is also used to determine the efficacy of the BCAs as these factors have economic significance to commercial growers. The pre-trial showed promise until the fertigation computer failed, resulting in a nutrient shortage and imbalance, confirming that BCAs alone cannot control PM. Synthetic fungicides were applied until control of PM and plant nutrition was regained. BCAs were re-introduced and used until the end of crop production. The confirmation from the pre-trial has led to the inclusion of silicon in conjunction with the BCAs in the two subsequent trials (Trials 1 & 2). Silicon was applied with the BCAs as a foliar spray on a weekly basis. In trials 1 and 2, the cucumber variety, Palladium, with a high genetic tolerance to PM is used, as this variety is suited to form part of the holistic approach used for trials 1 and 2. Trial 1 showed that treatment A, containing Streptomyces griseovirdis and Streptomyces aureofaciens, had the highest yield. Both of these are bacterial BCAs and demonstrated their adaptability to varied climatic conditions, notably when low humidity was experienced. In treatment B, Trichoderma harzianum strains, Rifai and Uppington, show the slowest rate of PM development. In trials 1 and 2, the best actual PM control was obtained by two fungal based BCAs (Trial 1, treatment C was Ampelomyces quisqualis) and (Trial 2, treatment B was Trichoderma harzianum strains, Rifai and Uppington), showing that fungal BCAs have a place for this application, but the growth-enhancing properties of bacterial based BCAs make economic sense and would make them attractive to growers. Treatment A (Streptomyces spp.) had the most number of fruit for the entire growing period and the best overall yield (kg yield) again. Two of the BCA / silicon treatments have marginally better PM control compared to that of the control (E) treatment, although not statistically significant. Treatment E (control) has the highest average fruit mass in this instance but does not have the highest yield (kg yield) when compared to treatments A and B, possibly due to the growth-enhancing properties of most of these BCAs. Therefore, most of these BCA treatments give fairly inconsistent results that vary possibly according to season, humidity and temperature, making it difficult to predict their efficacy. Using combinations or weekly alternations of these BCAs with extremes of climatic adaptation will probably be the most reliable method of obtaining consistent results. Bacterial BCAs are shown to have lower humidity requirements and produce the most consistent results in terms of fruit number, yield and fruit mass and a combination of bacterial and fungal based BCAs would possibly be the best as this would control PM and yet still have the growth enhancing properties from the bacterial based BCAs. From the research, it can be said that some BCAs in trials 1 and 2 produce results similar to that of the control in terms of percentage leaf area covered by PM and some are shown to have improved yields. Results produced from certain BCA treatments are thus equal to the control; yet provide an environmentally friendly alternative to synthetic fungicides. Silicon is listed as a beneficial element rather than an essential element; however, literature claims it to be highly effective in treating PM in cucurbits. Results from trials 1 and 2 show that control of PM is possible in most cases, when a holistic approach is used. This approach includes a cucumber variety with a high PM tolerance, optimum nutrition, cultural practices and silicon in combination with the BCAs. A complete change of management practices is necessary to implement such a BCA program. / Agriculture, Animal Health and Human Ecology / M. Tech. (Nature Conservation)

Page generated in 0.0546 seconds