• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Switched reluctance motor drive circuit evaluation criteria for vehicle efficiency responsiveness

Cunningham, John David 02 July 2013 (has links)
This thesis intends to examine the principles of operation for switched reluctance machines (SRM) and examine the power electronic drive circuits that control them, in order provide a basis of understanding for evaluating total drive efficiency and responsiveness potential. This document specifically examines the characteristics of a motor drive circuit which affect motor and converter efficiency and driving performance. A drive topology suited for efficient operation and excellent responsiveness is proposed. Finally, a SRM drive system model for evaluating these systems in simulation is described as a tool for comparative evaluations in future work. The end goal of this work is to provide a foundation of knowledge for future work, developing in-wheel, SRM-based, high performance hybrid electric drivetrains in future ground combat vehicles which are modular, possess an open architecture for upgrades, and operate with high efficiency and improved mobility. / text
2

Design of isolated DC-DC and DC-DC-AC converters with reduced number of power switches

Mallik, Dhara I. 07 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / There are various types of power electronic converters available in recent days. In some applications (e.g. PC power supply), it is required to supply more than one load from a single power supply. One of the main challenges while designing a power converter is to increase its e ciency especially when the number of power switches employed is relatively large. While several loads are supplied from a single source, if the power loss in the switches cannot be reduced, then the expected utilization of using a single source is not very feasible. To reduce the loss and increase e ciency, the thesis presents a novel design with reduced number of switches. The scope of this thesis is not limited to the dc-dc converter only, the converter to supply three phase ac loads from a single dc source is also presented. This discussion includes an improved fault tolerant configuration of the inverter part. The generated waveforms from the simulations are included as a demonstration of satisfactory results.
3

Study of Induction Machines with Rotating Power Electronic Converter

Yao, Yanmei January 2016 (has links)
This thesis investigates a novel induction machine topology that uses a rotating power electronic converter. Steady-state and dynamic performance of the topology is studied to understand its operational principle. Furthermore the potential of improving its efficiency and power factor is investigated. The topology is referred to as wound rotor induction machine with rotating power electronic converter (WRIM-RPEC).     The WRIM-RPEC topology offers the possibility to magnetize the induction machine from the rotor side by introducing a reactive voltage in the rotor. Thus, the power factor of the machine can be improved. Constant speed variable load operation can be achieved by setting the frequency of the introduced voltage. Two options of rotor winding and converter configuration in the WRIM-RPEC system are investigated. The wound rotor windings can either be open-ended and fed by a three-phase back-to-back converter or Y-connected and fed by a single three-phase converter. The dc-link in both converter configurations contains only a floating capacitor. These two configurations give different dc-link voltages at the same torque and speed.     Two analytical steady-state models of the topology are developed in this thesis. The first model can be used to analyze the operating condition of the motor at specific speed and torque. Particularly, the operating range of speed and torque of the topology is investigated. The second model is used to analyze variable power factor operation, including unity power factor operation. Analytical calculations and measurements are carried out on a 4-pole, 1.8kW induction machine and the results are compared.      A dynamic mathematic model is then developed for the WRIM-RPEC system for the back-to-back converter configuration. The mathematic model is then applied in Matlab/Simulink to study the dynamic performance of the system including starting, loading and phase-shifting. The simulation results are compared with measurements on the 4-pole, 1.8kW induction machine. Moreover, the simulation model using the existing Simulink blocks are studied to compare with the results obtained from the mathematic model. Furthermore, the dynamic performance of the WRIM-RPEC system with the single converter configuration is investigated. In addition, harmonic spectra analysis is conducted for the stator and rotor currents.     In the last part of the thesis, efficiency improvement is investigated on the 4-pole induction machine when it is assumed to drive a pump load. It is shown that the efficiency can be further improved by decreasing the rotor resistance. Due to space constraints it is however difficult to decrease the rotor resistance in a 4-pole induction machine. An investigation is thus carried out on a standard 12-pole, 17.5kW squirrel-cage induction machine with inherent low power factor. The cage rotor is redesigned to a wound rotor to enable the connection of converter to the rotor windings. An analytical model is developed to design the wound rotor induction machine. The machine performance from calculations is then compared with FEM simulations with good agreement. The analytical model is further used to design several WRIMs with different dimensions and rotor slot numbers. Power factor and efficiency improvement is then explored for these WRIMs. A promising efficiency increase of 6.8% is shown to be achievable. / <p>QC 20161111</p>
4

Utilizing the connected power electronic converter for improved condition monitoring of induction motors and claw-pole generators

Cheng, Siwei 27 March 2012 (has links)
This dissertation proposes several simple, robust, and non-intrusive condition monitoring methods for induction motors fed by closed-loop inverters and claw-pole generators with built-in rectifiers. While the flexible energy forms synthesized by power electronic converters greatly enhance the performance and expand the operating region of induction motors and claw-pole generators, they also significantly alter the fault behavior of these electric machines and complicate the fault detection and protection. In this dissertation, special characteristics of the connected closed-loop inverter and rectifier have been thoroughly analyzed, with particular interest in their impact on fault behaviors of the induction motor and the claw-pole generator. Based on the findings obtained from the theoretical and experimental analysis, several sensorless thermal, mechanical, and insulation monitoring methods are proposed by smartly utilizing special features and capabilities of the connected power electronic converter. A simple and sensitive stator turn-fault detector is proposed for induction motors fed by closed-loop inverter. In addition, a stator thermal monitoring method based on active DC current injection and direct voltage estimation is also proposed to prevent the closed-loop controlled induction motors from thermally overloading. The performance of both methods is demonstrated by extensive experimental results. Methods to detect serpentine belt slip, serpentine belt defect, rotor eccentricity have been proposed for claw-pole generators using only the available electric sensor information. Methods to detect and protect stator turn faults in claw-pole generators are also presented in this dissertation. Lastly, a novel method to detect the generalized bearing roughness fault is proposed. All the proposed condition monitoring techniques have been validated by experimental results.
5

Hall-Effect Current Sensors for Power Electronic Applications : Design and Performance Validation

Kumar, Ashish January 2014 (has links) (PDF)
Closed loop Hall-effect current sensors used in power electronic applications require high bandwidth and small transient errors. For this, the behaviour of a closed loop Hall-e ect current sensor is modeled. Analytical expression of the step response of the sensor using this model is used to evaluate the performance of the PI compensator in the current sensor. Based on this expression a procedure is proposed to design parameters of the PI compensator for fast dynamic performance and for small transient error. A prototype closed loop Hall-effect current sensor is built in the laboratory. A PI compensator based on the procedure devised earlier is designed for the sensor. A power electronic converter based current source is designed and fabricated in the labo-ratory for validation of steady state and transient performance of Hall-effect current sensors. A novel hardware topology is proposed, using which the same hardware set-up can produce both step current and sinusoidal current in its designated sections without any modi cation in the hardware con guration. It produces step current of controlled peak value upto 100A and controlled rate of change with both positive and negative dtdi . The step transition time is less than 200ns. The dtdi is adjustable upto a limit of 300A/ s to verify the dtdi following capability of the sensor. The same current source produces continuous sinusoidal current of controlled magnitude upto 75A peak and controlled frequency from 1Hz to 1000Hz. The magnitude and the frequency of the sinusoidal current can be varied on-line like a voltage function generator. The hardware of the current source is designed to consume minimal ac-tive power from mains during continuous sinusoidal current generation. This current source is used in experimental veri cation of the steady state and the transient performance of the designed laboratory current sensor. The transient performance of the laboratory current sensor is observed to be superior to state-of-the-art commercial current sensors available for power electronic applications.
6

Energy Storage System Requirements For Shipboard Power Systems Supplying Pulsed Power Loads

Duvoor, Prashanth 15 December 2007 (has links)
Energy storage systems will likely be needed for future shipboard power systems that supply loads with high power variability such as pulsed power loads. The power generation in shipboard power systems may not be sufficient to satisfy the energy demands of the pulsed power load systems operating in conjunction with other ship service loads. Two fundamental items in evaluating the requirements of an energy storage system are the energy storage capacity and the ratings of the power conversion equipment that interfaces the energy device to the power system. The supply current of pulsed power load systems is aperiodic and cannot be described in terms of active power. Also, the RMS value and thus apparent power are only defined for periodic quantities. Therefore traditional methods of rating power equipment cannot be used. This thesis describes an approach to determine the ratings of an energy storage interface and the energy storage capacity of an energy storage device as a function of load and supply parameters. The results obtained using the proposed approach are validated with the results obtained from the simulation model of the generator supplying a pulsed power load in conjunction with an energy storage system. The energy storage system requirements for various pulsed power load profiles are obtained using the proposed approach. The method used for determining the ratings of an energy storage system utilizes an orthogonal decomposition of pulsed power load system supply current evaluated within a sliding window. The signals obtained from the decomposition are also useful in generating the control reference signals for the energy storage interface. Although the approach and methods are focused on a particular structure of the pulsed power load system, they may be generalized for use in any type of configuration of a pulsed power load system.
7

Average Current-Mode Control

Chadha, Ankit January 2015 (has links)
No description available.
8

Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator

Malik, Naveed ur Rehman January 2015 (has links)
This thesis deals with the modeling, analysis and control of a novel brushlessgenerator for wind power application. The generator is named as rotatingpower electronic brushless doubly-fed induction machine/generator (RPEBDFIM/G). A great advantage of the RPE-BDFIG is that the slip power recoveryis realized in a brushless manner. This is achieved by introducing an additionalmachine termed as exciter together with the rotating power electronicconverters, which are mounted on the shaft of a DFIG. It is shown that theexciter recovers the slip power in a mechanical manner, and delivers it backto the grid. As a result, slip rings and carbon brushes can be eliminated,increasing the robustness of the system, and reducing the maintenance costsand down-time of the turbine. To begin with, the dynamic model of the RPE-BDFIG is developed andanalyzed. Using the dynamic model, the working principle of the generatoris understood and its operation explained. The analysis is carried out atspeeds, ±20% around the synchronous speed of the generator. Moreover, thedynamics of the generator due to external load-torque disturbances are investigated.Additionally, the steady-state model is also derived and analyzed forthe machine, when operating in motor mode. As a next step, the closed-loop control of the generator is considered indetail. The power and speed control of the two machines of the generator andthe dc-link voltage control is designed using internal model control (IMC)principles. It is found that it is possible to maintain the stability of thegenerator against load-torque disturbances from the turbine and the exciter,at the same time maintain a constant dc-link voltage of the rotor converter.The closed-loop control is also implemented and the operation of the generatorwith the control theory is confirmed through experiments.In the third part of the thesis, the impact of grid faults on the behaviourof the generator is investigated. The operation of the generator and its responseis studied during symmetrical and unsymmetrical faults. An approachto successful ride through of the symmetrical faults is presented, using passiveresistive network (PRN). Moreover, in order to limit the electrical and mechanicaloscillations in the generator during unsymmetrical faults, the dualvector control (DVC) is implemented. It is found that DVC to a certain extentcan be used to safeguard the converter against large oscillations in rotorcurrents. Finally, for completeness of the thesis, a preliminary physical design ofthe rotating power electronic converter has been done in a finite elementsoftware called ANSYS. The thermal footprint and the cooling capability,with estimates of the heatsink and fan sizes, are presented. Besides, another variant of a rotating electronic induction machine whichis based on the Lindmark concept and operating in a single-fed mode is also investigated. It’s steady-state model is developed and verified through experiments. / <p>QC 20151006</p>
9

Simulace přímého pohonu větrné turbíny s výkonem 660kW. / Simulation of a 660kW direct drive wind turbine

Hála, Jiří January 2009 (has links)
V tomto projektu jsou popsány základy problematiky větrných elektráren. V první řadě práce zmiňuje ekomonické aspekty, vývoj větrné energetiky v minulosti a pravděpodobný vývoj v příští generaci, stavbu a možné topologie větrných elektráren. Dále je ukázána konstrukce větrné elektrárny, integrace větrvých parků do distribuční sítě a ostrovní sítě a související ekonomické aspekty. Dále jsou zmíněny způsoby řízení, kvality elektrické energie a bezpečnosti. V následující části, je provedena simulace moderní přímo poháněné turbíny o výkonu 660kW a řešení koeficientu výkonu. Pro tuto simulaci byl použitý systém s pomaloběžným synchronním generátorem s permanentnímy magnety. Chování a výsledky simulace větrné elektrárny jsou popsány v závěrečné části této práce.
10

Analysis and Control Aspects of Brushless Induction Machines with Rotating Power Electronic Converters

Malik, Naveed ur Rehman January 2012 (has links)
This thesis deals with the steady-state, dynamic and control aspects of new type of brushless configuration of a doubly-fed induction machine in which the slip rings and carbon brushes are replaced by rotating power electronics and a rotating exciter. The aim is to study the stability of this novel configuration of the generator under mechanical and grid disturbances for wind power applications. The derivation, development and analysis of the steady-state model of the brushless doubly-fed induction machine with a rotating excitor and the power electronic converters mounted on the shaft and rotating with it, is studied. The study is performed at rated power of the generator between ±20% slip range. Moreover unity power factor operation between ±20% speed range is also discussed. Furthermore dynamic modeling and control aspects of the generator are also analyzed. The controllers were designed using Internal Model Control principles and vector control methods were used in order to control the generator in a closed-loop system. It is shown that through the use of proper feedback control, the generator behaves in a stable state both at super-synchronous and sub-synchronous speeds. Moreover Low Voltage Ride Through of the generator during symmetrical and unsymmetrical voltage dips is also investigated. Passive Resistive Network strategy is employed for Low Voltage Ride Through of the generator during symmetrical voltage dips. On the other hand, Extended Vector Control is used in order to control the negative sequence currents during unsymmetrical voltage dips. Suppression of negative sequence currents is important as they cause extra heating in the windings and affects the lifetime of the mechanical and electrical components of the generator and system due to oscillations in power and torque. In addition to the above studies a steady-state model of a single-fed induction machine is also developed and investigated where the rotating exciter is removed and the rotor windings are short-circuited through the two rotating power electronic converters. In this way the slip power circulates in the rotor and with the help of the two rotating electronic converters, rotor current is used to magnetize the induction machine thereby improving the power factor. The steady state model is verified through experimental results. / <p>20120914</p> / Brushless Wind Generator with Rotating Power Electronic Converters

Page generated in 0.0732 seconds