• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 105
  • 17
  • 11
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 387
  • 387
  • 153
  • 146
  • 120
  • 79
  • 74
  • 71
  • 68
  • 68
  • 66
  • 64
  • 61
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid

January 2014 (has links)
abstract: This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand. The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions. One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
92

Solving for the Low-Voltage/Large-Angle Power-Flow Solutions by using the Holomorphic Embedding Method

January 2015 (has links)
abstract: For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions is known as the high-voltage (HV) solution or operable solution. The rest of the solutions are the low-voltage (LV), or large-angle, solutions. In this report, a recently developed non-iterative algorithm for solving the power- flow (PF) problem using the holomorphic embedding (HE) method is shown as being capable of finding the HV solution, while avoiding converging to LV solutions nearby which is a drawback to all other iterative solutions. The HE method provides a novel non-iterative procedure to solve the PF problems by eliminating the non-convergence and initial-estimate dependency issues appeared in the traditional iterative methods. The detailed implementation of the HE method is discussed in the report. While published work focuses mainly on finding the HV PF solution, modified holomorphically embedded formulations are proposed in this report to find the LV/large-angle solutions of the PF problem. It is theoretically proven that the proposed method is guaranteed to find a total number of 2N solutions to the PF problem and if no solution exists, the algorithm is guaranteed to indicate such by the oscillations in the maximal analytic continuation of the coefficients of the voltage power series obtained. After presenting the derivation of the LV/large-angle formulations for both PQ and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted to find all the solutions of the system of nonlinear PF equations for those systems using the proposed HE method. After completing the derivation to find all the PF solutions using the HE method, it is shown that the proposed HE method can be used to find only the of interest PF solutions (i.e. type-1 PF solutions with one positive real-part eigenvalue in the Jacobian matrix), with a proper algorithm developed. The closet unstable equilibrium point (UEP), one of the type-1 UEP’s, can be obtained by the proposed HE method with limited dynamic models included. The numerical performance as well as the robustness of the proposed HE method is investigated and presented by implementing the algorithm on the problematic cases and large-scale power system. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
93

Effect of Various Holomorphic Embeddings on Convergence Rate and Condition Number as Applied to the Power Flow Problem

January 2015 (has links)
abstract: Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded. This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution. By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail. With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER. / Dissertation/Thesis / Flow chart of the HE algorithm / Presentation for mater's thesis defense / Masters Thesis Electrical Engineering 2015
94

Improved Convex Optimal Decision-making Processes in Distribution Systems: Enable Grid Integration of Photovoltaic Resources and Distributed Energy Storage

January 2016 (has links)
abstract: This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have been widely reported in distribution systems as the penetration of PV resources has increased. Decision-making processes for determining the optimal allo-cation and scheduling of DES, and the optimal placement of smart PV inverters are con-sidered. The alternating current (AC) power flow constraints are used in these optimiza-tion models. The first two optimization problems are formulated as quadratically-constrained quadratic programming (QCQP) problems while the third problem is formu-lated as a mixed-integer QCQP (MIQCQP) problem. In order to obtain a globally opti-mum solution to these non-convex optimization problems, convex relaxation techniques are introduced. Considering that the costs of the DES are still very high, a procedure for DES sizing based on OpenDSS is proposed in this research to avoid over-sizing. Some existing convex relaxations, e.g. the second order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation, which have been well studied for the optimal power flow (OPF) problem work unsatisfactorily for the DES and smart inverter optimization problems. Several convex constraints that can approximate the rank-1 constraint X = xxT are introduced to construct a tighter SDP relaxation which is referred to as the enhanced SDP (ESDP) relaxation using a non-iterative computing framework. Obtaining the convex hull of the AC power flow equations is beneficial for mitigating the non-convexity of the decision-making processes in power systems, since the AC power flow constraints exist in many of these problems. The quasi-convex hull of the quadratic equalities in the AC power bus injection model (BIM) and the exact convex hull of the quadratic equality in the AC power branch flow model (BFM) are proposed respectively in this thesis. Based on the convex hull of BFM, a novel convex relaxation of the DES optimizations is proposed. The proposed approaches are tested on a real world feeder in Arizona and several benchmark IEEE radial feeders. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
95

Método do look ahead modificado para estudos de colapso de tensão

Martins, Luís Fabiano Barone [UNESP] 23 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-23Bitstream added on 2014-06-13T20:09:48Z : No. of bitstreams: 1 martins_lfb_me_bauru.pdf: 963421 bytes, checksum: 7c1f9175f040c64a63fdf8db9f7a10a1 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho foi feita uma análise comparativa entre diferentes escolhas dos pontos utilizados pelo método look ahead na estimação do ponto de máximo carregamento de um sistema elétrico de potência. O Fluxo de Cargo Continuado é utilizado na geração dos pontos de operação utilizados pelo método look ahead e para servir como referência na comparação entre os resultados previstos e o ponto de máximo carregamento real. Uma vez que a exatidão dessa estimativa é fortemente afetada pela escolha desses pontos, o FCC é modificado para fornecer pontos mais adequados para o bom funcionamento do método look ahead. A metodologia proposta é aplicada ao sistema IEEE de 300 barras, os resultados obtidos mostram o seu bom funcionamento / Here we did a comparative analysis between different choices of the points used by the look ahead method for estimating maximum loading point of a power system. The Continued Power Flow (CPF) is used in the generation of operating points used by the look ahead method and to serve as a reference in comparison between the predicted results and the real maximum loading point. Since the accurancy of this estimative is strongly affected by choicen of these points, the CPF is modified to provide the most appropriate for the proper functioning of the method look ahead. The proposed methodology system is applied to IEEE 300 buses, the results have shown its good functioning
96

Fluxo de potência ótimo em sistemas elétricos de potência através de um algoritmo genético multiobjetivo / Flujo de potencia óptimo en sistemas eléctricos de potencia a través de un algoritmo genético multiobjetivo

Araujo, Elaynne Xavier Souza 23 February 2018 (has links)
Submitted by ELAYNNE XAVIER SOUZA ARAÚJO null (elaynnearaujo@hotmail.com) on 2018-03-13T18:51:38Z No. of bitstreams: 1 Tese_Final.pdf: 5331631 bytes, checksum: 60e1011da397d7e88cc9d80319169d76 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-03-14T12:06:56Z (GMT) No. of bitstreams: 1 araujo_exs_dr_ilha.pdf: 5331631 bytes, checksum: 60e1011da397d7e88cc9d80319169d76 (MD5) / Made available in DSpace on 2018-03-14T12:06:56Z (GMT). No. of bitstreams: 1 araujo_exs_dr_ilha.pdf: 5331631 bytes, checksum: 60e1011da397d7e88cc9d80319169d76 (MD5) Previous issue date: 2018-02-23 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho é proposto o desenvolvimento de uma ferramenta computacional para o planeja-mento e despacho ótimo de fontes de potência ativa, considerando as incertezas das cargas (le-ve, nominal e pesada) e fontes de energia renováveis não despacháveis através de uma aborda-gem probabilística. O modelo matemático é um problema de programação não linear inteiro misto, multiobjetivo, não convexo e probabilístico na sua forma original sem a necessidade de realizar qualquer tipo de simplificação ou linearização tanto das funções objetivo como das res-trições. Um algoritmo baseado na meta-heurística Non-dominated Sorting Genetic Algorithm (NSGA-II) é proposto para resolver o problema de maneira eficaz. Os resultados obtidos com as simulações realizadas usando a implementação computacional nos sistemas de testes IEEE30 barras e IEEE118 barras mostram a eficiência e robustez da metodologia proposta. / This work proposes the development of a computational tool for the planning and optimal dispatch of active power sources, considering the uncertainties of the loads (light, nominal and heavy) and non-dispatchable renewable energy sources through a probabilistic approach. The mathematical model is a multi-objective mixed-integer nonlinear programing problem, that is nonconvex and probabilistic in its original form, without the need to perform any kind of simplification or linearization of both objective functions and constraints. An algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA-II) meta-heuristic is pro-posed to solve the problem effectively. The results obtained with the simulations performed using the computational implementation in the IEEE30 bus and IEEE118 bus test systems show the efficiency and robustness of the proposed methodology. / 167761/2014-5
97

Application of Holomorphic Embedding to the Power-Flow Problem

January 2014 (has links)
abstract: With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving the PF problem. While the theory behind a restricted version of the method is well rooted in complex analysis, holomorphic functions and algebraic curves, the practical implementation of the method requires going beyond the published details and involves numerical issues related to Taylor's series expansion, Padé approximants, convolution and solving linear matrix equations. The HE power flow was developed by a non-electrical engineer with language that is foreign to most engineers. One purpose of this document to describe the approach using electric-power engineering parlance and provide an understanding rooted in electric power concepts. This understanding of the methodology is gained by applying the approach to a two-bus dc PF problem and then gradually from moving from this simple two-bus dc PF problem to the general ac PF case. Software to implement the HE method was developed using MATLAB and numerical tests were carried out on small and medium sized systems to validate the approach. Implementation of different analytic continuation techniques is included and their relevance in applications such as evaluating the voltage solution and estimating the bifurcation point (BP) is discussed. The ability of the HE method to trace the PV curve of the system is identified. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
98

Optimal Utilization of Distributed Resources with an Iterative Transmission and Distribution Framework

January 2014 (has links)
abstract: This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It is further used to develop an accurate pricing mechanism (Distribution-based Location Marginal Pricing), which is reflective of the moment-to-moment costs of generating and delivering electrical energy, for the distribution system. By accurately modeling the two sub-systems, we can improve the economic efficiency and the system reliability, as the price sensitive resources can be controlled to behave in a way that benefits the power system as a whole. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
99

Impact of electric vehicles in the steady state operation of distribution systems / Impacto de veÃculos elÃtricos na operaÃÃo em regime permanente de sistemas de distribuiÃÃo

Erasmo Saraiva de Castro 15 June 2015 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / This work aims to quantify the impact in the steady state operation of a distribution system when electric vehicles are connected. It is worth noting that the connection of them may cause significant changes in the voltage profile, in the degree of voltage unbalance and in the electrical losses of the system. In order to make this analysis, a three-phase power flow program was developed in MATLAB language. This program is based on the Ladder Iterative Technique and it contains models of overhead distribution lines, underground distribution lines, spot loads, distributed loads connected in wye and delta, step voltage regulators, capacitor banks, three-phase transformers and the model of an electric vehicle. This model allows simulation of a real electric vehicle of model Tesla Roadster, produced by Tesla Motors. The test system used in all simulations was the IEEE 13 bus. Moreover, the methodology consisted in simulate the system with the voltage regulator and without the voltage regulator under heavy load and light load conditions. The electric vehicle was connected to a specific systemâs bus and it were considered that it could work as a load or as a distributed generator with or without positive sequence voltage control. Constants configurations of the electric vehicles were considered for the heavy load and light load cases. The results of the simulations reveal there was voltage violation due to the connection of electric vehicles acting as loads in the test system under heavy load conditions without voltage regulator. When they operate as generators, they can maintain the voltage unbalance under the allowed 2%, turning the systemâs voltages more balanced. There were significant reductions when the electric vehicles acted as a load (71.1%) and as generator (77.5%) on the total real power losses when the system operated with voltage regulator on the substation and the electric vehicles operated with positive sequence voltage control (specified at 1,0 pu). / Este trabalho tem o objetivo de quantificar o impacto da conexÃo de veÃculos elÃtricos na operaÃÃo em regime permanente de um sistema de distribuiÃÃo. à visto que a conexÃo dos mesmos pode causar mudanÃas significativas no perfil de tensÃes, no grau de desequilÃbrio de tensÃo e nas perdas elÃtricas do sistema. Para realizar essa anÃlise, desenvolveu-se um programa de fluxo de potÃncia trifÃsico na linguagem MATLAB. O programa à baseado na tÃcnica iterativa de escada. Foram implementados nesse programa modelos de linhas de distribuiÃÃo aÃreas e subterrÃneas, modelos de cargas concentradas e distribuÃdas conectadas em delta e em estrela, modelos de reguladores de tensÃo, modelos de banco de capacitores, modelo de transformadores trifÃsicos e o modelo do veÃculo elÃtrico. Esse modelo permite simular o veÃculo elÃtrico Tesla Roadster da Tesla Motors. O sistema teste utilizado em todas as simulaÃÃes foi o sistema IEEE 13 barras. A metodologia utilizada consistiu em simular o sistema sem regulador de tensÃo e com o regulador de tensÃo, em carga pesada e em carga leve. O veÃculo elÃtrico foi conectado a uma barra do sistema e considerou-se que o mesmo podia funcionar como carga ou gerador distribuÃdo sem e com controle de tensÃo de sequÃncia positiva no ponto de conexÃo. Adotou-se disposiÃÃes constantes de veÃculos elÃtricos para os casos de carga pesada e carga leve. Os resultados das simulaÃÃes revelam que houve violaÃÃo de tensÃo devido à inserÃÃo de veÃculos elÃtricos atuando como carga no sistema teste em carga pesada sem regulador de tensÃo. Jà quando operam como gerador, os veÃculos elÃtricos diminuem o grau de desequilÃbrio em mÃdia, podendo mantÃ-lo abaixo do limite permitido de 2 %, tornando assim as tensÃes das barras trifÃsicas do sistema mais equilibradas. Houve reduÃÃes significativas quando os veÃculos elÃtricos atuaram como carga (71,1 %) e como gerador (77,5 %) na perda de potÃncia ativa total do sistema quando o sistema operou com regulador de tensÃo na subestaÃÃo e os veÃculos elÃtricos operaram com controle de tensÃo de sequÃncia positiva (especificada em 1,0 pu).
100

Um metodo incremental para alocação das perdas de transmissão baseado no fluxo de cargas CA / An incremental method for transmission loss allocation based on AC power flow

Menezes, Taciana de Vasconcelos 10 July 2005 (has links)
Orientador: Luiz Carlos Pereira da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-05T12:14:14Z (GMT). No. of bitstreams: 1 Menezes_TacianadeVasconcelos_D.pdf: 6420793 bytes, checksum: f382ddde0cefab51526d7f41efc2ff66 (MD5) Previous issue date: 2005 / Resumo: Este trabalho apresenta um método para a alocação das perdas ativas de transmissão entre os agentes de um mercado de energia elétrica. No Brasil, a metodologia a ser implementada para a alocação das perdas baseia-se em métodos incrementais e na definição de fatores de perda tanto para a carga quanto para a geração. Esses fatores são calculados por meio de fluxo de carga CC, que considera algumas aproximações nas equações do fluxo de potência convencional. Devido a isto, acredita-se que este método possa fornecer uma alocação das perdas injusta aos participantes do mercado. Esta tese propõe uma metodologia para o cálculo dos fatores de perda, baseada em métodos incrementais, mas considerando a não-linearidade das equações do fluxo de carga, utilizando para isso um modelo de fluxo de carga CA. Os métodos CC e CA são aplicados a um sistema composto de 5 barras e a uma versão do sistema norte-nordeste brasileiro. Os resultados obtidos comprovam as limitações do método incremental CC, justificando a utilização de uma metodologia CA para a alocação das perdas. O método CA proposto mostrou-se eficiente e preciso no cálculo dos fatores de perda, além de permitir, diferentemente da metodologia CC, a consideração da sensibilidade da perda ativa total do sistema com a variação da potência reativa, o que a maioria dos métodos negligencia / Abstract: This work presents a method for active power transmission loss allocation among electrical market participants. In Brazil, the methodology to be implemented for loss allocation is based on incremental methods and defines loss factors for generators and loads. This technique uses a DC load flow to calculate the loss factors, and so it does not consider the complete power flow equations. Consequently, this method may provide unfair loss allocation depending on the system operation condition. This thesis proposes a methodology to calculate the loss factors, based on incremental methods but using an AC load flow taking into account system non-linearity. The DC and AC methods are applied to a small system composed by five buses and to a version of the Brazilian North-Northwest system. The results prove the limitation of DC incremental method, justifying the use of a methodology based on AC load flow equation for losses allocation. The AC method proposed shows to be efficient and accurate to calculate the loss factors as well permits to include directly, differently from the DC method, the total active power loss sensitivities with respect to reactive power changes, which most of loss allocation techniques neglect / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica

Page generated in 0.0377 seconds